supplementary materials


cv5352 scheme

Acta Cryst. (2012). E68, m1475    [ doi:10.1107/S1600536812045643 ]

trans-Dichloridobis[tris(4-methoxylphenyl)phosphane-[kappa]P]platinum(II) acetone disolvate

A. Muller

Abstract top

In the title compound, [PtCl2(C21H21O3P)2]·2C3H6O, the asymmetric unit contains a PtII ion situated on an inversion center, one chloride anion, one tris(4-methoxylphenyl)phosphane (L) ligand and one acetone solvent molecule. The PtII ion is coordinated by two P atoms [Pt-P = 2.3196 (5) Å] from two L ligands and two chloride anions [Pt-Cl = 2.3075 (5) Å] in a distorted square-planar geometry with P-Pt-Cl angles of 88.016 (16) and 91.984 (16)°. The effective cone angle of the phosphane ligand was calculated to be 156°. Weak C-H...O and C-H...Cl hydrogen bonds hold molecules together.

Comment top

Transition metal complexes containing phosphane, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation (Muller & Meijboom, 2010; van Blerk & Holzapfel, 2009) involving complexes with the general formula trans/cis-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained by the substitution of 1,5-cyclooctadiene (COD) with the tris(4-methoxyphenyl)phosphane from cis-[PtCl2(COD)].

Molecules of the title compound (Fig. 1) crystallizes in the P1 (Z = 1) space group with the Pt atom on an inversion center and two acetone solvate molecules accompanying it. Each pair of equivalent ligands is in a trans orientation with only slight distortion observed in the P—Pt—Cl angles from the ideal square-planar geometry. The orientation of the phosphanes is such that there is one 4-methoxyphenyl substituent close to the coordination plane, i.e. Cl1—Pt1—P1—C8 = -14.92 (7)°. The steric demand of phosphane ligand can be described by using an adaptation of the Tolman cone angle model (Tolman, 1977). By adjusting the Pt—P bond distance to 2.28 Å, and using the geometry from the title compound, an effective cone angle value (Otto, 2001) of 156° was obtained. The packing of the title compound shows weak C—H···Cl/O interactions (Table 1).

Related literature top

For related compounds, see: Spessard & Miessler (1996); van Blerk & Holzapfel (2009); Muller & Meijboom (2010). For background to cone angles, see: Tolman (1977); Otto (2001).

Experimental top

trans-Dichloridobis[tris(4-methoxylphenyl)phosphane]platinum(II) was prepared from reaction of cis-[PtCl2(1,5-cyclooctadiene)] (10.8 mg, 0.0289 mmol) and tris(4-methoxyphenyl)phosphane (10 mg, 0.0259 mmol) in acetone. The mixture was refluxed for 4hrs, then filtered and crystals suitable for a single-crystal X-ray diffraction study was obtained by recrystallization from acetone. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = 16.4 (t, 1J(31P-195Pt) = 2586 Hz).

Refinement top

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density. Residual electron density values (< 1 Å-3) are within 1 Å from Pt and represent no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids [symmetry code: (') 1 - x, 1 - y, 1 - z]. Hydrogen atoms and solvent molecules were omitted for clarity.
trans-Dichloridobis[tris(4-methoxylphenyl)phosphane- κP]platinum(II) acetone disolvate top
Crystal data top
[PtCl2(C21H21O3P)2]·2C3H6OZ = 1
Mr = 1086.84F(000) = 548
Triclinic, P1Dx = 1.56 Mg m3
a = 10.486 (1) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.0360 (11) ÅCell parameters from 9903 reflections
c = 11.3630 (11) Åθ = 2.2–32.7°
α = 85.787 (2)°µ = 3.27 mm1
β = 63.924 (2)°T = 100 K
γ = 78.370 (2)°Rectangle, colourless
V = 1156.70 (19) Å30.19 × 0.13 × 0.11 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5799 independent reflections
Graphite monochromator5763 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.042
φ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1314
Tmin = 0.679, Tmax = 0.746k = 1414
31470 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.016P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
5799 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[PtCl2(C21H21O3P)2]·2C3H6Oγ = 78.370 (2)°
Mr = 1086.84V = 1156.70 (19) Å3
Triclinic, P1Z = 1
a = 10.486 (1) ÅMo Kα radiation
b = 11.0360 (11) ŵ = 3.27 mm1
c = 11.3630 (11) ÅT = 100 K
α = 85.787 (2)°0.19 × 0.13 × 0.11 mm
β = 63.924 (2)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5799 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5763 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.746Rint = 0.042
31470 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.040Δρmax = 0.68 e Å3
S = 1.04Δρmin = 0.51 e Å3
5799 reflectionsAbsolute structure: ?
282 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 20 s/frame. A total of 2352 frames were collected with a frame width of 0.5° covering up to θ = 28.66° with 99.3% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50.50.50.00927 (3)
Cl10.52266 (5)0.28766 (4)0.49934 (4)0.01424 (9)
P10.49557 (5)0.49994 (4)0.29769 (5)0.01069 (9)
O20.31108 (15)0.97824 (13)0.08244 (15)0.0210 (3)
O30.06877 (15)0.21272 (14)0.30254 (14)0.0212 (3)
O11.08770 (15)0.32059 (15)0.12406 (14)0.0225 (3)
O1S0.08106 (17)0.10043 (16)0.63614 (17)0.0353 (4)
C200.4006 (2)0.32915 (18)0.19434 (19)0.0146 (4)
H200.49080.32160.11890.017*
C60.7760 (2)0.35873 (19)0.1910 (2)0.0190 (4)
H60.75190.32770.27690.023*
C190.2972 (2)0.26563 (18)0.1987 (2)0.0174 (4)
H190.31770.21360.12720.021*
C180.1634 (2)0.27795 (18)0.3078 (2)0.0153 (4)
C50.9129 (2)0.3196 (2)0.0926 (2)0.0220 (5)
H50.98210.26220.11120.026*
C170.1346 (2)0.35162 (18)0.4140 (2)0.0160 (4)
H170.04410.35980.48910.019*
C10.67224 (19)0.44348 (17)0.16598 (18)0.0128 (4)
C80.43388 (19)0.64708 (17)0.23846 (18)0.0123 (4)
C30.8488 (2)0.44858 (19)0.06024 (19)0.0165 (4)
H30.87370.48040.14590.02*
C150.37324 (19)0.40419 (17)0.29972 (18)0.0124 (4)
C120.4759 (2)0.84717 (19)0.14382 (19)0.0171 (4)
H120.53560.90770.11350.02*
C110.3432 (2)0.86913 (18)0.13752 (19)0.0149 (4)
C160.2402 (2)0.41291 (18)0.40867 (19)0.0141 (4)
H160.2210.46240.48170.017*
C100.2547 (2)0.78264 (19)0.1844 (2)0.0183 (4)
H100.16310.79820.18270.022*
C71.1264 (2)0.3620 (2)0.2550 (2)0.0215 (4)
H7A1.06430.33610.28860.032*
H7B1.22760.3260.31040.032*
H7C1.11370.45250.25610.032*
C40.9497 (2)0.36409 (18)0.03364 (19)0.0158 (4)
C1S0.2096 (2)0.0584 (2)0.5897 (2)0.0253 (5)
C90.3009 (2)0.67246 (18)0.2342 (2)0.0164 (4)
H90.23970.6130.26610.02*
C140.1812 (2)0.9985 (2)0.0649 (2)0.0245 (5)
H14A0.18450.93060.01210.037*
H14B0.17261.07690.02010.037*
H14C0.09751.0020.15070.037*
C20.7115 (2)0.48623 (19)0.03891 (19)0.0165 (4)
H20.64230.54280.01960.02*
C130.5205 (2)0.73802 (18)0.19384 (19)0.0151 (4)
H130.61070.72410.19820.018*
C210.0678 (2)0.2190 (2)0.4155 (2)0.0253 (5)
H21A0.05160.18710.49150.038*
H21B0.1260.1690.39920.038*
H21C0.1190.30520.43270.038*
C2S0.2949 (3)0.0285 (2)0.4466 (2)0.0388 (7)
H2S10.22890.03430.40570.058*
H2S20.35170.05570.43460.058*
H2S30.36020.08730.40560.058*
C3S0.2896 (3)0.0339 (2)0.6725 (3)0.0385 (6)
H3S10.22340.05970.76320.058*
H3S20.36850.08050.63930.058*
H3S30.32950.05480.66930.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00961 (5)0.00951 (5)0.00805 (5)0.00186 (3)0.00334 (4)0.00087 (4)
Cl10.0185 (2)0.0105 (2)0.0130 (2)0.00282 (17)0.00628 (18)0.00104 (17)
P10.0110 (2)0.0113 (2)0.0095 (2)0.00231 (18)0.00417 (18)0.00079 (18)
O20.0229 (7)0.0151 (7)0.0244 (8)0.0027 (6)0.0113 (6)0.0078 (6)
O30.0204 (7)0.0245 (8)0.0227 (8)0.0114 (6)0.0098 (6)0.0001 (6)
O10.0129 (7)0.0352 (9)0.0120 (7)0.0017 (6)0.0010 (6)0.0017 (6)
O1S0.0215 (8)0.0367 (10)0.0382 (10)0.0019 (7)0.0049 (8)0.0059 (8)
C200.0154 (9)0.0151 (10)0.0121 (9)0.0033 (7)0.0050 (8)0.0009 (7)
C60.0204 (10)0.0200 (11)0.0131 (10)0.0004 (8)0.0062 (8)0.0029 (8)
C190.0227 (10)0.0158 (10)0.0157 (10)0.0039 (8)0.0097 (8)0.0013 (8)
C180.0174 (9)0.0133 (9)0.0196 (10)0.0060 (7)0.0113 (8)0.0048 (8)
C50.0180 (10)0.0261 (12)0.0160 (10)0.0057 (8)0.0062 (8)0.0004 (9)
C170.0145 (9)0.0168 (10)0.0165 (10)0.0039 (7)0.0065 (8)0.0018 (8)
C10.0114 (8)0.0132 (9)0.0135 (9)0.0038 (7)0.0043 (7)0.0004 (7)
C80.0136 (9)0.0129 (9)0.0097 (9)0.0014 (7)0.0048 (7)0.0007 (7)
C30.0174 (9)0.0199 (10)0.0092 (9)0.0028 (8)0.0034 (8)0.0004 (8)
C150.0131 (8)0.0116 (9)0.0133 (9)0.0029 (7)0.0066 (7)0.0024 (7)
C120.0192 (10)0.0166 (10)0.0160 (10)0.0074 (8)0.0070 (8)0.0026 (8)
C110.0179 (9)0.0131 (9)0.0112 (9)0.0006 (7)0.0050 (8)0.0004 (7)
C160.0160 (9)0.0140 (9)0.0125 (9)0.0027 (7)0.0062 (8)0.0002 (7)
C100.0152 (9)0.0177 (10)0.0228 (11)0.0028 (8)0.0098 (8)0.0040 (8)
C70.0166 (10)0.0268 (12)0.0142 (10)0.0046 (8)0.0001 (8)0.0028 (9)
C40.0121 (9)0.0187 (10)0.0141 (10)0.0024 (7)0.0030 (8)0.0037 (8)
C1S0.0250 (11)0.0141 (10)0.0307 (13)0.0049 (9)0.0064 (10)0.0028 (9)
C90.0158 (9)0.0147 (10)0.0182 (10)0.0055 (8)0.0065 (8)0.0043 (8)
C140.0261 (11)0.0195 (11)0.0297 (12)0.0009 (9)0.0167 (10)0.0052 (9)
C20.0147 (9)0.0192 (10)0.0144 (10)0.0003 (8)0.0064 (8)0.0008 (8)
C130.0156 (9)0.0166 (10)0.0133 (9)0.0043 (8)0.0060 (8)0.0003 (8)
C210.0204 (10)0.0275 (12)0.0306 (13)0.0112 (9)0.0108 (10)0.0027 (10)
C2S0.0381 (14)0.0278 (14)0.0300 (14)0.0102 (11)0.0042 (11)0.0084 (11)
C3S0.0387 (14)0.0326 (14)0.0456 (16)0.0033 (11)0.0208 (13)0.0010 (12)
Geometric parameters (Å, º) top
Pt1—Cl1i2.3075 (5)C3—C41.386 (3)
Pt1—Cl12.3075 (5)C3—H30.95
Pt1—P12.3196 (5)C15—C161.390 (3)
Pt1—P1i2.3197 (5)C12—C131.378 (3)
P1—C151.8110 (19)C12—C111.396 (3)
P1—C11.8151 (19)C12—H120.95
P1—C81.8185 (19)C11—C101.380 (3)
O2—C111.366 (2)C16—H160.95
O2—C141.433 (2)C10—C91.391 (3)
O3—C181.361 (2)C10—H100.95
O3—C211.435 (3)C7—H7A0.98
O1—C41.366 (2)C7—H7B0.98
O1—C71.426 (2)C7—H7C0.98
O1S—C1S1.212 (3)C1S—C3S1.492 (3)
C20—C191.386 (3)C1S—C2S1.495 (3)
C20—C151.397 (3)C9—H90.95
C20—H200.95C14—H14A0.98
C6—C51.381 (3)C14—H14B0.98
C6—C11.401 (3)C14—H14C0.98
C6—H60.95C2—H20.95
C19—C181.394 (3)C13—H130.95
C19—H190.95C21—H21A0.98
C18—C171.391 (3)C21—H21B0.98
C5—C41.390 (3)C21—H21C0.98
C5—H50.95C2S—H2S10.98
C17—C161.387 (3)C2S—H2S20.98
C17—H170.95C2S—H2S30.98
C1—C21.390 (3)C3S—H3S10.98
C8—C91.388 (3)C3S—H3S20.98
C8—C131.406 (3)C3S—H3S30.98
C3—C21.384 (3)
Cl1i—Pt1—Cl1180.0000 (10)C17—C16—C15122.03 (18)
Cl1i—Pt1—P191.984 (16)C17—C16—H16119
Cl1—Pt1—P188.016 (16)C15—C16—H16119
Cl1i—Pt1—P1i88.016 (16)C11—C10—C9119.42 (18)
Cl1—Pt1—P1i91.984 (16)C11—C10—H10120.3
P1—Pt1—P1i180C9—C10—H10120.3
C15—P1—C1107.86 (9)O1—C7—H7A109.5
C15—P1—C8103.27 (8)O1—C7—H7B109.5
C1—P1—C8103.77 (9)H7A—C7—H7B109.5
C15—P1—Pt1110.80 (6)O1—C7—H7C109.5
C1—P1—Pt1112.70 (6)H7A—C7—H7C109.5
C8—P1—Pt1117.60 (6)H7B—C7—H7C109.5
C11—O2—C14116.83 (16)O1—C4—C3124.33 (18)
C18—O3—C21117.38 (16)O1—C4—C5115.86 (17)
C4—O1—C7116.81 (15)C3—C4—C5119.80 (18)
C19—C20—C15120.62 (18)O1S—C1S—C3S121.7 (2)
C19—C20—H20119.7O1S—C1S—C2S121.3 (2)
C15—C20—H20119.7C3S—C1S—C2S117.0 (2)
C5—C6—C1120.95 (18)C8—C9—C10121.71 (18)
C5—C6—H6119.5C8—C9—H9119.1
C1—C6—H6119.5C10—C9—H9119.1
C20—C19—C18120.17 (18)O2—C14—H14A109.5
C20—C19—H19119.9O2—C14—H14B109.5
C18—C19—H19119.9H14A—C14—H14B109.5
O3—C18—C17124.15 (18)O2—C14—H14C109.5
O3—C18—C19115.85 (18)H14A—C14—H14C109.5
C17—C18—C19119.99 (18)H14B—C14—H14C109.5
C6—C5—C4120.14 (18)C3—C2—C1121.79 (17)
C6—C5—H5119.9C3—C2—H2119.1
C4—C5—H5119.9C1—C2—H2119.1
C16—C17—C18118.99 (18)C12—C13—C8120.71 (17)
C16—C17—H17120.5C12—C13—H13119.6
C18—C17—H17120.5C8—C13—H13119.6
C2—C1—C6117.78 (17)O3—C21—H21A109.5
C2—C1—P1121.60 (14)O3—C21—H21B109.5
C6—C1—P1120.56 (15)H21A—C21—H21B109.5
C9—C8—C13117.93 (17)O3—C21—H21C109.5
C9—C8—P1121.10 (14)H21A—C21—H21C109.5
C13—C8—P1120.97 (14)H21B—C21—H21C109.5
C2—C3—C4119.52 (18)C1S—C2S—H2S1109.5
C2—C3—H3120.2C1S—C2S—H2S2109.5
C4—C3—H3120.2H2S1—C2S—H2S2109.5
C16—C15—C20118.19 (17)C1S—C2S—H2S3109.5
C16—C15—P1117.96 (14)H2S1—C2S—H2S3109.5
C20—C15—P1123.68 (15)H2S2—C2S—H2S3109.5
C13—C12—C11120.23 (18)C1S—C3S—H3S1109.5
C13—C12—H12119.9C1S—C3S—H3S2109.5
C11—C12—H12119.9H3S1—C3S—H3S2109.5
O2—C11—C10124.34 (17)C1S—C3S—H3S3109.5
O2—C11—C12115.70 (17)H3S1—C3S—H3S3109.5
C10—C11—C12119.96 (18)H3S2—C3S—H3S3109.5
Cl1i—Pt1—P1—C15133.32 (7)C1—P1—C15—C16166.68 (14)
Cl1—Pt1—P1—C1546.68 (7)C8—P1—C15—C1683.88 (16)
Cl1i—Pt1—P1—C1105.72 (7)Pt1—P1—C15—C1642.91 (16)
Cl1—Pt1—P1—C174.28 (7)C1—P1—C15—C2018.18 (18)
Cl1i—Pt1—P1—C814.92 (7)C8—P1—C15—C2091.26 (17)
Cl1—Pt1—P1—C8165.08 (7)Pt1—P1—C15—C20141.95 (14)
C15—C20—C19—C181.2 (3)C14—O2—C11—C104.5 (3)
C21—O3—C18—C171.4 (3)C14—O2—C11—C12175.03 (18)
C21—O3—C18—C19177.40 (17)C13—C12—C11—O2177.95 (18)
C20—C19—C18—O3179.52 (17)C13—C12—C11—C101.6 (3)
C20—C19—C18—C171.6 (3)C18—C17—C16—C150.8 (3)
C1—C6—C5—C40.1 (3)C20—C15—C16—C171.2 (3)
O3—C18—C17—C16179.38 (17)P1—C15—C16—C17174.19 (15)
C19—C18—C17—C160.6 (3)O2—C11—C10—C9177.62 (19)
C5—C6—C1—C20.3 (3)C12—C11—C10—C91.8 (3)
C5—C6—C1—P1176.99 (17)C7—O1—C4—C32.8 (3)
C15—P1—C1—C288.16 (17)C7—O1—C4—C5178.13 (18)
C8—P1—C1—C220.94 (18)C2—C3—C4—O1179.84 (19)
Pt1—P1—C1—C2149.22 (14)C2—C3—C4—C51.1 (3)
C15—P1—C1—C694.64 (17)C6—C5—C4—O1179.66 (19)
C8—P1—C1—C6156.27 (16)C6—C5—C4—C30.5 (3)
Pt1—P1—C1—C627.99 (18)C13—C8—C9—C101.7 (3)
C15—P1—C8—C914.06 (18)P1—C8—C9—C10177.47 (16)
C1—P1—C8—C9126.52 (16)C11—C10—C9—C80.2 (3)
Pt1—P1—C8—C9108.28 (16)C4—C3—C2—C11.3 (3)
C15—P1—C8—C13165.06 (16)C6—C1—C2—C30.9 (3)
C1—P1—C8—C1352.59 (17)P1—C1—C2—C3176.36 (16)
Pt1—P1—C8—C1372.60 (17)C11—C12—C13—C80.4 (3)
C19—C20—C15—C160.2 (3)C9—C8—C13—C122.0 (3)
C19—C20—C15—P1174.93 (15)P1—C8—C13—C12177.19 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.952.73.493 (2)142
C10—H10···O1Sii0.952.573.235 (3)127
C12—H12···O2iii0.952.533.357 (2)146
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.952.73.493 (2)141.5
C10—H10···O1Si0.952.573.235 (3)127.4
C12—H12···O2ii0.952.533.357 (2)146.1
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z.
Acknowledgements top

Research Fund of the University of Johannesburg is gratefully acknowledged.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Blerk, C. van & Holzapfel, C. W. (2009). Acta Cryst. E65, m1536.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Muller, A. & Meijboom, R. (2010). Acta Cryst. E66, m1420.

Otto, S. (2001). Acta Cryst. C57, 793–795.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.

Tolman, C. A. (1977). Chem. Rev. 77, 313–348.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.