supplementary materials


cv5358 scheme

Acta Cryst. (2012). E68, m1483    [ doi:10.1107/S1600536812046314 ]

Bis[O-methyl (4-ethoxyphenyl)dithiophosphonato-[kappa]2S,S']nickel(II)

S. Sewpersad, B. Omondi and W. E. Van Zyl

Abstract top

In the title compound, [Ni(C9H12O2PS2)2], the NiII atom resides on an inversion center and is coordinated by four S atoms [Ni-S = 2.2328 (4) and 2.2455 (3) Å] in a distorted square-planar geometry [S-Ni-S = 88.443 (13) and 91.557 (13)°]. In the crystal, molecules related by translation in [110] are linked into chains via weak C-H...O interactions. The crystal packing exhibits short intermolecular S...S contacts of 3.3366 (5) Å.

Comment top

The phosphor-1,1-dithiolate class of compounds is the heavier and softer congener of the popular phosphonate derivatives. It contains the S2P functionality as a common feature and several sub-categories are known which include the dithiophosphato [S2P(OR)2]¯, (R = typically alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Amongst all metals involved in the coordination chemistry of dithiophosphonato ligands, however, nickel(II) is by far the best represented (Van Zyl & Woollins, 2012) with the first X-ray structural report of a nickel(II) dithiophosphonate complex reported more than four decades ago (Hartung, 1967). The title complex, (I), was formed from the reaction between NiCl2.6H20 and the ammonium salt of [S2P(OMe)(4-C6H4OEt)] (molar ratio 1:2) in an aqueous/methanolic solution, the NH4Cl by-product was dissolved and the precipitated product filtered off and washed with water. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000).

The structure of (I) (Fig. 1) does not differ significantly from related Ni(II) complexes previously reported (Aragoni et al., 2007; Arca et al. (1997); Gray et al. (2004); Liu et al. (2004); Özcan et al., 2002). The Ni atom in (I) resides on an inversion center and is coordinated by four S atoms [Ni—S 2.2328 (4), 2.2455 (3) Å] in a distorted square-planar geometry [S—Ni—S 88.443 (13), 91.557 (13)°]. Molecules related by translation in [110] are linked into chains via weak C—H···O interactions (Table 1). The crystal packing exhibits short intermolecular S···S contacts of 3.3366 (5) Å.

Related literature top

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010); Van Zyl & Woollins (2012). For related structures of nickel(II) dithiophosphonate complexes, see: Hartung (1967); Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997); Özcan et al. (2002).

Experimental top

A colorless methanol (40 ml) solution of NH4[S2P(OMe)(4-C6H4OEt)] (1.044 g, 4.474 mmol) was prepared. A second green solution of NiCl2.6H20 (540 mg, 2.272 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a purple precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 x 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing purple powder. Purple crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 1.004 g, 41%. M.p. 168°C.

31P NMR (CDCl3): δ (p.p.m.): 104.56. 1H NMR (CDCl3): δ (p.p.m.): 7.94 (2H, dd, J(31P-1H) = 12.76 Hz, J(1H -1H) = 10.08 Hz, o-ArH), 6.95 (2H, dd, J(31P-1H) = 8.76 Hz, J(1H-1H) = 3.08 Hz, m-ArH), 4.07 (2H, quart, J(1H-1H) = 6.96 Hz, ArOCH2), 3.96 (3H, d, J(31P-1H) = 14.8 Hz, POCH3), 1.41 (3H, t, J(1H-1H) = 6.98 Hz, ArOCH2CH3). 13C NMR (CDCl3): δ (p.p.m.): 162.64 (p-ArC), 131.78 (m-ArC), 128.68 (Ar—Cipso), 114.62 (o-ArC), 63.99 (ArOCH2), 52.73 (OCH3), 14.85 (ArOCH2CH3).

Refinement top

All hydrogen atoms were found in the difference electron density maps, then placed in idealized positions (C—H = 0.95–1.00 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atomic numbering and 50% probability displacement ellispoids [symmetry code: (i)-x + 2,-y + 2,-z + 2]. H atoms omitted for clarity.
Bis[O-methyl (4-ethoxyphenyl)dithiophosphonato- κ2S,S']nickel(II) top
Crystal data top
[Ni(C9H12O2PS2)2]F(000) = 572
Mr = 553.26Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19824 reflections
a = 13.5866 (5) Åθ = 2.9–28.4°
b = 6.4212 (2) ŵ = 1.36 mm1
c = 14.1047 (5) ÅT = 173 K
β = 109.389 (2)°Block, purple
V = 1160.74 (7) Å30.43 × 0.31 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube2609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1817
Tmin = 0.593, Tmax = 0.737k = 88
19824 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.7956P]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.56 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C9H12O2PS2)2]V = 1160.74 (7) Å3
Mr = 553.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.5866 (5) ŵ = 1.36 mm1
b = 6.4212 (2) ÅT = 173 K
c = 14.1047 (5) Å0.43 × 0.31 × 0.24 mm
β = 109.389 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2609 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.737Rint = 0.036
19824 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.56 e Å3
S = 1.07Δρmin = 0.44 e Å3
2850 reflectionsAbsolute structure: ?
135 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70393 (11)0.8288 (2)0.85131 (10)0.0149 (3)
C20.68704 (11)0.6590 (2)0.90614 (11)0.0175 (3)
H20.73980.55640.93060.021*
C30.59371 (12)0.6398 (2)0.92488 (12)0.0196 (3)
H30.58230.52370.96170.024*
C40.51619 (11)0.7913 (2)0.88969 (11)0.0167 (3)
C50.53108 (12)0.9588 (3)0.83320 (12)0.0202 (3)
H50.47771.05980.80750.024*
C60.62531 (12)0.9759 (3)0.81507 (12)0.0211 (3)
H60.63621.09050.77710.025*
C70.34352 (11)0.9068 (2)0.87693 (12)0.0199 (3)
H7A0.31910.91200.80260.024*
H7B0.36621.04800.90330.024*
C80.25769 (12)0.8303 (3)0.91356 (13)0.0258 (3)
H8A0.24010.68620.89150.039*
H8B0.19590.91860.88590.039*
H8C0.28120.83640.98710.039*
C90.88481 (12)0.8281 (3)0.67579 (12)0.0243 (3)
H9A0.91840.96500.68910.036*
H9B0.85620.80520.60310.036*
H9C0.93630.71970.70650.036*
O10.42818 (8)0.76065 (18)0.91366 (8)0.0210 (2)
O20.80067 (8)0.81965 (17)0.71841 (7)0.0172 (2)
P10.82716 (3)0.87053 (6)0.83456 (3)0.01290 (9)
S10.88018 (3)1.16115 (5)0.87163 (3)0.01505 (9)
S20.94269 (3)0.69659 (5)0.92450 (3)0.01547 (9)
Ni11.00001.00001.00000.01236 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (6)0.0163 (7)0.0142 (6)0.0026 (5)0.0024 (5)0.0008 (5)
C20.0168 (7)0.0162 (7)0.0186 (7)0.0021 (5)0.0050 (5)0.0025 (6)
C30.0200 (7)0.0181 (7)0.0218 (7)0.0007 (6)0.0085 (6)0.0061 (6)
C40.0156 (6)0.0187 (7)0.0157 (6)0.0013 (6)0.0050 (5)0.0007 (6)
C50.0152 (7)0.0194 (7)0.0246 (7)0.0024 (6)0.0050 (6)0.0065 (6)
C60.0177 (7)0.0201 (7)0.0252 (7)0.0005 (6)0.0067 (6)0.0088 (6)
C70.0171 (7)0.0192 (7)0.0239 (7)0.0027 (6)0.0074 (6)0.0006 (6)
C80.0209 (7)0.0271 (9)0.0324 (9)0.0015 (6)0.0127 (7)0.0004 (7)
C90.0219 (7)0.0328 (9)0.0212 (7)0.0004 (7)0.0113 (6)0.0025 (7)
O10.0176 (5)0.0231 (6)0.0251 (5)0.0041 (4)0.0107 (4)0.0069 (5)
O20.0164 (5)0.0212 (5)0.0133 (5)0.0019 (4)0.0038 (4)0.0016 (4)
P10.01195 (16)0.01266 (17)0.01283 (16)0.00089 (13)0.00241 (13)0.00025 (13)
S10.01442 (16)0.01179 (16)0.01655 (16)0.00085 (12)0.00194 (13)0.00125 (13)
S20.01453 (16)0.01163 (17)0.01733 (16)0.00058 (12)0.00138 (13)0.00038 (13)
Ni10.01162 (12)0.01061 (13)0.01350 (12)0.00046 (9)0.00235 (9)0.00017 (9)
Geometric parameters (Å, º) top
C1—C61.390 (2)C8—H8A0.9800
C1—C21.399 (2)C8—H8B0.9800
C1—P11.7871 (14)C8—H8C0.9800
C2—C31.384 (2)C9—O21.4585 (17)
C2—H20.9500C9—H9A0.9800
C3—C41.398 (2)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C4—O11.3606 (17)O2—P11.5902 (10)
C4—C51.393 (2)P1—S21.9996 (5)
C5—C61.391 (2)P1—S12.0061 (5)
C5—H50.9500P1—Ni12.8306 (4)
C6—H60.9500S1—Ni12.2455 (3)
C7—O11.4408 (18)S2—Ni12.2328 (4)
C7—C81.506 (2)Ni1—S2i2.2328 (4)
C7—H7A0.9900Ni1—S1i2.2455 (3)
C7—H7B0.9900Ni1—P1i2.8306 (4)
C6—C1—C2119.07 (13)O2—C9—H9C109.5
C6—C1—P1119.25 (11)H9A—C9—H9C109.5
C2—C1—P1121.52 (11)H9B—C9—H9C109.5
C3—C2—C1120.23 (14)C4—O1—C7118.63 (12)
C3—C2—H2119.9C9—O2—P1118.47 (9)
C1—C2—H2119.9O2—P1—C1101.76 (6)
C2—C3—C4120.03 (14)O2—P1—S2113.60 (4)
C2—C3—H3120.0C1—P1—S2113.88 (5)
C4—C3—H3120.0O2—P1—S1113.49 (4)
O1—C4—C5124.08 (14)C1—P1—S1112.10 (5)
O1—C4—C3115.59 (13)S2—P1—S1102.47 (2)
C5—C4—C3120.33 (13)O2—P1—Ni1138.74 (4)
C6—C5—C4118.91 (14)C1—P1—Ni1119.49 (5)
C6—C5—H5120.5S2—P1—Ni151.639 (13)
C4—C5—H5120.5S1—P1—Ni151.985 (12)
C1—C6—C5121.39 (14)P1—S1—Ni183.279 (16)
C1—C6—H6119.3P1—S2—Ni183.755 (17)
C5—C6—H6119.3S2i—Ni1—S2180.0
O1—C7—C8106.33 (13)S2i—Ni1—S191.557 (13)
O1—C7—H7A110.5S2—Ni1—S188.443 (13)
C8—C7—H7A110.5S2i—Ni1—S1i88.443 (13)
O1—C7—H7B110.5S2—Ni1—S1i91.557 (13)
C8—C7—H7B110.5S1—Ni1—S1i180.0
H7A—C7—H7B108.7S2i—Ni1—P1i44.606 (11)
C7—C8—H8A109.5S2—Ni1—P1i135.394 (11)
C7—C8—H8B109.5S1—Ni1—P1i135.263 (12)
H8A—C8—H8B109.5S1i—Ni1—P1i44.737 (12)
C7—C8—H8C109.5S2i—Ni1—P1135.394 (11)
H8A—C8—H8C109.5S2—Ni1—P144.606 (11)
H8B—C8—H8C109.5S1—Ni1—P144.737 (12)
O2—C9—H9A109.5S1i—Ni1—P1135.263 (12)
O2—C9—H9B109.5P1i—Ni1—P1180.0
H9A—C9—H9B109.5
C6—C1—C2—C30.8 (2)C1—P1—S2—Ni1109.65 (5)
P1—C1—C2—C3174.69 (12)S1—P1—S2—Ni111.639 (18)
C1—C2—C3—C40.5 (2)P1—S2—Ni1—S2i67 (100)
C2—C3—C4—O1178.75 (14)P1—S2—Ni1—S110.140 (16)
C2—C3—C4—C51.9 (2)P1—S2—Ni1—S1i169.860 (16)
O1—C4—C5—C6178.78 (14)P1—S2—Ni1—P1i180.0
C3—C4—C5—C61.9 (2)P1—S1—Ni1—S2i169.884 (16)
C2—C1—C6—C50.7 (2)P1—S1—Ni1—S210.116 (16)
P1—C1—C6—C5174.82 (13)P1—S1—Ni1—S1i11 (100)
C4—C5—C6—C10.6 (2)P1—S1—Ni1—P1i180.0
C5—C4—O1—C71.5 (2)O2—P1—Ni1—S2i97.35 (7)
C3—C4—O1—C7177.89 (13)C1—P1—Ni1—S2i81.64 (6)
C8—C7—O1—C4178.93 (13)S2—P1—Ni1—S2i180.000 (1)
C9—O2—P1—C1177.47 (12)S1—P1—Ni1—S2i14.48 (2)
C9—O2—P1—S254.64 (12)O2—P1—Ni1—S282.65 (7)
C9—O2—P1—S161.90 (12)C1—P1—Ni1—S298.36 (6)
C9—O2—P1—Ni13.43 (15)S1—P1—Ni1—S2165.52 (2)
C6—C1—P1—O274.92 (13)O2—P1—Ni1—S182.87 (7)
C2—C1—P1—O2109.62 (12)C1—P1—Ni1—S196.12 (6)
C6—C1—P1—S2162.44 (11)S2—P1—Ni1—S1165.52 (2)
C2—C1—P1—S213.02 (14)O2—P1—Ni1—S1i97.13 (7)
C6—C1—P1—S146.67 (13)C1—P1—Ni1—S1i83.88 (6)
C2—C1—P1—S1128.78 (11)S2—P1—Ni1—S1i14.48 (2)
C6—C1—P1—Ni1104.40 (12)S1—P1—Ni1—S1i180.0
C2—C1—P1—Ni171.06 (13)O2—P1—Ni1—P1i20 (100)
O2—P1—S1—Ni1134.48 (4)C1—P1—Ni1—P1i161 (100)
C1—P1—S1—Ni1110.92 (5)S2—P1—Ni1—P1i63 (100)
S2—P1—S1—Ni111.583 (18)S1—P1—Ni1—P1i102 (100)
O2—P1—S2—Ni1134.46 (5)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.952.573.5123 (18)171
Symmetry code: (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.573.5123 (18)171
Symmetry code: (i) x+1, y+1, z+2.
Acknowledgements top

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

references
References top

Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127–2134.

Arca, M., Cornia, A., Devillanova, F. A., Fabretti, A. C., Isaia, F., Lippolis, V. & Verani, G. (1997). Inorg. Chim. Acta, 262, 81–84.

Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486.

Hartung, H. (1967). Z. Chem. 7, 241.

Liu, H.-L., Mao, H.-Y., Xu, C., Zhang, H.-Y., Hou, H.-W., Wu, Q., Zhu, Y., Ye, B.-X. & Yuan, L.-J. (2004). Polyhedron, 23, 1799–1804.

Özcan, Y., İde, S., Karakus, M. & Yılmaz, H. (2002). Acta Cryst. C, 58, m388–?.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.

Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.

Van Zyl, W. E. & Woollins, J. D. (2012). Coord. Chem. Rev. doi:10.1016/j.ccr.2012.10.010.