organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-3-(4-methyl­anilino)naph­tha­lene-1,4-dione

aDepartment of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
*Correspondence e-mail: liu_yun3@sina.com.cn

(Received 14 August 2012; accepted 1 November 2012; online 17 November 2012)

In the title compound, C17H12ClNO2, the naphtho­quinone system is essentially planar [maximum deviation = 0.078 (2) Å] and makes a dihedral angle of 52.38 (7)° with the benzene ring. The crystal structure features N—H⋯O inter­actions.

Related literature

For the properties of substituted naphtho­quinones, see: Batton et al. (2000[Batton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G. & Monks, T. J. (2000). Chem. Res. Toxicol. 13, 135-160.]); Monks et al. (1992[Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D. & Graham, D. G. (1992). Toxicol. Appl. Pharmacol. 112, 2-16.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structure of 2-hy­droxy­quinoxaline, see: Stępień et al. (1976[Stępień, A., Grabowski, M. J., Cygler, M. & Wajsman, E. (1976). Acta Cryst. B32, 2048-2050.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12ClNO2

  • Mr = 297.73

  • Orthorhombic, P n a 21

  • a = 12.1614 (10) Å

  • b = 22.4915 (18) Å

  • c = 5.0444 (4) Å

  • V = 1379.79 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]) Tmin = 0.946, Tmax = 0.972

  • 15471 measured reflections

  • 2479 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.036

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.27

  • 2479 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯O2 0.70 (2) 2.23 (3) 2.611 (3) 116 (2)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The substituted naphthoquinone have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Batton et al., 2000; Monks et al., 1992]. In our ongoing research work on the syntheses of amino-substituted naphthoquinones, we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure.

In the title compound, the bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The naphthoquinone ring[C1—C10] is essentially planar. The naphthoquinone ring makes the dihedral angle 52.38 (0.07) with the benzene ring [C11—C16]. Although atoms C9 and C11 attached to atom N are all of sp^2^ hybridization, their different environments cause slight differences in the N—C9, N—C11 bond lengths, and in the C9—N—H, C11—N—H angles (Table 1). The molecular packing is stabilized by intermolecular N—H···O hydrogen bonds (Table 2).

Related literature top

For the properties of substituted naphthoquinones, see: Batton et al. (2000); Monks et al. (1992). For standard bond lengths, see: Allen et al. (1987). For the structure of 2-hydroxyquinoxaline, see: Stępień et al. (1976).

Experimental top

To a stirred solution of naphthoquinone (1.0 eq) in 10 ml of acetonitrile, potassium carbonate (3.0 eq) was added. The mixture was stirred at room temperature for 5 min, followed by the addition of aniline (1.0 eq) and silver nitrate (0.1 mmol). The reaction mixture was refluxed for 10 h until complete consumption of starting material was observed on TLC. The reaction mixture was purified over silica gel (EtOAc/hexane)to afford the product in 96% yield.

Refinement top

The H atoms were geometrically placed and were treated as riding, with C—H = 0.93 Å.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
2-Chloro-3-(4-methylanilino)naphthalene-1,4-dione top
Crystal data top
C17H12ClNO2Dx = 1.433 Mg m3
Mr = 297.73Melting point: 475 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 12.1614 (10) Åθ = 9–12°
b = 22.4915 (18) ŵ = 0.28 mm1
c = 5.0444 (4) ÅT = 296 K
V = 1379.79 (19) Å3Block, red
Z = 40.2 × 0.2 × 0.1 mm
F(000) = 616
Data collection top
Enraf–Nonius CAD-4
diffractometer
2420 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 1414
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 2627
Tmin = 0.946, Tmax = 0.972l = 66
15471 measured reflections3 standard reflections every 200 reflections
2479 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.1832P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
2479 reflectionsΔρmax = 0.41 e Å3
195 parametersΔρmin = 0.42 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.083 (7)
Crystal data top
C17H12ClNO2V = 1379.79 (19) Å3
Mr = 297.73Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.1614 (10) ŵ = 0.28 mm1
b = 22.4915 (18) ÅT = 296 K
c = 5.0444 (4) Å0.2 × 0.2 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2420 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.036
Tmin = 0.946, Tmax = 0.9723 standard reflections every 200 reflections
15471 measured reflections intensity decay: none
2479 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.41 e Å3
2479 reflectionsΔρmin = 0.42 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Flack parameter does not have any meaning here. Obviously anomalous contribution from Cl was not good enough to resolve the chirality.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.79748 (5)0.74205 (2)0.55999 (16)0.0433 (2)
C101.05237 (17)0.70460 (10)0.0576 (6)0.0407 (5)
C80.87671 (18)0.71478 (10)0.3028 (5)0.0351 (5)
O10.73453 (13)0.64787 (8)0.1976 (5)0.0514 (5)
C90.97837 (19)0.73816 (10)0.2467 (5)0.0358 (5)
N1.02703 (18)0.78611 (10)0.3494 (5)0.0453 (6)
O21.14579 (14)0.72164 (10)0.0280 (5)0.0623 (6)
C60.89985 (18)0.63439 (10)0.0415 (5)0.0378 (5)
C110.97909 (19)0.83701 (11)0.4684 (5)0.0393 (5)
C70.82917 (18)0.66522 (9)0.1601 (5)0.0376 (5)
C51.00808 (18)0.65242 (10)0.0834 (5)0.0395 (5)
C10.8574 (2)0.58704 (11)0.1871 (6)0.0497 (7)
H1A0.78480.57520.16260.060*
C121.0318 (2)0.86289 (12)0.6821 (6)0.0480 (6)
H12A1.09600.84630.74920.058*
C160.8851 (2)0.86286 (12)0.3654 (6)0.0475 (6)
H16A0.85020.84630.21910.057*
C31.0317 (2)0.57524 (13)0.4066 (7)0.0586 (7)
H3A1.07580.55510.52760.070*
C41.0739 (2)0.62259 (13)0.2648 (6)0.0522 (7)
H4A1.14640.63450.29080.063*
C150.8440 (2)0.91351 (12)0.4826 (7)0.0522 (7)
H15A0.78070.93060.41270.063*
C130.9881 (2)0.91369 (14)0.7954 (7)0.0579 (8)
H13A1.02360.93070.94000.069*
C140.8930 (3)0.93989 (12)0.6993 (7)0.0572 (7)
C20.9233 (3)0.55771 (12)0.3683 (7)0.0582 (8)
H2A0.89490.52600.46510.070*
C170.8458 (3)0.99422 (15)0.8318 (9)0.0829 (12)
H17A0.78041.00640.74020.124*
H17B0.89881.02580.82690.124*
H17C0.82810.98511.01280.124*
H1.082 (2)0.7883 (12)0.317 (6)0.033 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0329 (3)0.0546 (3)0.0424 (3)0.00269 (19)0.0127 (3)0.0028 (3)
C100.0276 (11)0.0539 (11)0.0407 (12)0.0004 (8)0.0058 (10)0.0035 (12)
C80.0240 (10)0.0460 (12)0.0351 (11)0.0060 (8)0.0057 (9)0.0038 (9)
O10.0278 (8)0.0552 (10)0.0712 (13)0.0061 (7)0.0072 (9)0.0009 (9)
C90.0259 (11)0.0456 (11)0.0357 (12)0.0016 (8)0.0017 (10)0.0012 (9)
N0.0226 (10)0.0570 (13)0.0564 (14)0.0033 (9)0.0085 (10)0.0117 (10)
O20.0310 (9)0.0820 (13)0.0739 (15)0.0127 (8)0.0194 (10)0.0292 (12)
C60.0329 (12)0.0402 (10)0.0402 (12)0.0013 (9)0.0011 (9)0.0046 (9)
C110.0294 (10)0.0460 (11)0.0425 (13)0.0028 (9)0.0077 (10)0.0030 (10)
C70.0285 (10)0.0397 (11)0.0446 (13)0.0014 (9)0.0001 (9)0.0085 (9)
C50.0321 (11)0.0449 (11)0.0414 (13)0.0044 (9)0.0002 (10)0.0000 (10)
C10.0414 (13)0.0452 (13)0.0626 (17)0.0036 (11)0.0045 (12)0.0005 (12)
C120.0369 (13)0.0566 (14)0.0504 (15)0.0004 (10)0.0004 (12)0.0033 (12)
C160.0359 (12)0.0593 (15)0.0471 (14)0.0015 (11)0.0023 (11)0.0026 (12)
C30.0538 (15)0.0609 (15)0.0612 (18)0.0056 (11)0.0077 (15)0.0217 (15)
C40.0399 (13)0.0591 (14)0.0575 (17)0.0010 (11)0.0054 (13)0.0110 (13)
C150.0394 (13)0.0534 (14)0.0638 (19)0.0082 (11)0.0123 (13)0.0158 (12)
C130.0569 (17)0.0587 (16)0.0581 (18)0.0068 (13)0.0048 (15)0.0135 (13)
C140.0584 (17)0.0481 (13)0.0650 (19)0.0006 (12)0.0234 (15)0.0004 (13)
C20.0606 (17)0.0498 (13)0.0640 (19)0.0001 (12)0.0094 (14)0.0143 (12)
C170.101 (3)0.0615 (18)0.086 (3)0.0188 (19)0.032 (2)0.0042 (18)
Geometric parameters (Å, º) top
Cl1—C81.728 (2)C12—C131.383 (4)
C10—O21.208 (3)C12—H12A0.9300
C10—C51.474 (3)C16—C151.377 (4)
C10—C91.513 (3)C16—H16A0.9300
C8—C91.373 (3)C3—C41.382 (4)
C8—C71.447 (3)C3—C21.389 (4)
O1—C71.230 (3)C3—H3A0.9300
C9—N1.335 (3)C4—H4A0.9300
N—C111.418 (3)C15—C141.379 (5)
N—H0.69 (3)C15—H15A0.9300
C6—C11.393 (4)C13—C141.386 (5)
C6—C51.393 (3)C13—H13A0.9300
C6—C71.501 (3)C14—C171.506 (4)
C11—C121.382 (4)C2—H2A0.9300
C11—C161.383 (4)C17—H17A0.9600
C5—C41.389 (4)C17—H17B0.9600
C1—C21.383 (4)C17—H17C0.9600
C1—H1A0.9300
O2—C10—C5122.5 (2)C13—C12—H12A120.3
O2—C10—C9118.6 (2)C15—C16—C11119.1 (3)
C5—C10—C9118.94 (18)C15—C16—H16A120.4
C9—C8—C7123.5 (2)C11—C16—H16A120.4
C9—C8—Cl1121.39 (19)C4—C3—C2119.9 (3)
C7—C8—Cl1115.08 (16)C4—C3—H3A120.0
N—C9—C8129.0 (2)C2—C3—H3A120.0
N—C9—C10112.6 (2)C3—C4—C5119.9 (3)
C8—C9—C10118.3 (2)C3—C4—H4A120.0
C9—N—C11129.4 (2)C5—C4—H4A120.0
C9—N—H113 (2)C16—C15—C14122.6 (3)
C11—N—H116 (2)C16—C15—H15A118.7
C1—C6—C5119.5 (2)C14—C15—H15A118.7
C1—C6—C7119.9 (2)C12—C13—C14121.8 (3)
C5—C6—C7120.6 (2)C12—C13—H13A119.1
C12—C11—C16119.9 (2)C14—C13—H13A119.1
C12—C11—N118.6 (2)C15—C14—C13117.1 (3)
C16—C11—N121.3 (2)C15—C14—C17122.4 (3)
O1—C7—C8122.8 (2)C13—C14—C17120.5 (3)
O1—C7—C6119.6 (2)C1—C2—C3120.4 (3)
C8—C7—C6117.64 (19)C1—C2—H2A119.8
C4—C5—C6120.3 (2)C3—C2—H2A119.8
C4—C5—C10119.5 (2)C14—C17—H17A109.5
C6—C5—C10120.2 (2)C14—C17—H17B109.5
C2—C1—C6119.9 (2)H17A—C17—H17B109.5
C2—C1—H1A120.1C14—C17—H17C109.5
C6—C1—H1A120.1H17A—C17—H17C109.5
C11—C12—C13119.5 (3)H17B—C17—H17C109.5
C11—C12—H12A120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O20.70 (2)2.23 (3)2.611 (3)116 (2)

Experimental details

Crystal data
Chemical formulaC17H12ClNO2
Mr297.73
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)12.1614 (10), 22.4915 (18), 5.0444 (4)
V3)1379.79 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.946, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
15471, 2479, 2420
Rint0.036
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.27
No. of reflections2479
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O20.70 (2)2.23 (3)2.611 (3)116 (2)
 

Acknowledgements

The authors acknowledge the financial support of Xuzhou City (XZZD1213).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBatton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G. & Monks, T. J. (2000). Chem. Res. Toxicol. 13, 135–160.  Web of Science PubMed Google Scholar
First citationEnraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMonks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D. & Graham, D. G. (1992). Toxicol. Appl. Pharmacol. 112, 2–16.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStępień, A., Grabowski, M. J., Cygler, M. & Wajsman, E. (1976). Acta Cryst. B32, 2048–2050.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds