supplementary materials


fj2606 scheme

Acta Cryst. (2012). E68, m1534    [ doi:10.1107/S1600536812047368 ]

Bis[O-propyl (4-ethoxyphenyl)dithiophosphonato-[kappa]2S,S']nickel(II)

S. Sewpersad, B. Omondi and W. E. Van Zyl

Abstract top

The title compound, [Ni(C11H16O2PS2)2], contains a four-coordinate NiII cation with an idealized square-planar geometry. The metal atom is surrounded by two chelating isobidentate dithiophosphonate ligands in a trans or anti configuration, binding through the S-donor atoms.

Comment top

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives (Van Zyl, 2010). It contains the S2P functionality as a common feature and several sub-categories are known which include the dithiophosphato [S2P(OR)2]¯, (R = typically alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed.

Amongst all metals involved in the coordination chemistry of dithiophosphonato ligands, however, nickel(II) is by far the best represented [Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997); Van Zyl & Woollins, (2012)] with the first X-ray structural report of a nickel(II) dithiophosphonate complex reported more than 4 decades ago (Hartung, 1967). The structure of the title complex does not differ significantly from related NiII complexes previously reported (see related literature). The Ni—S bond length is 2.2254 (2) and 2.2264 (2) Å, which is an insignificantly small difference to be considered anisobidentate. The Ni—P bond length is 2.8310 (3) Å, and the S—P bond length is 2.0081 (3) and 2.0026 (4) Å, respectively.

The complex in the present study was formed from the reaction between NiCl2.6H20 and the ammonium salt of [S2P(OPr)(4-C6H4OEt)] (molar ratio 1:2) in an aqueous/methanolic solution, the NH4Cl by-product was dissolved and the precipitated product filtered off and washed with water. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000).

Related literature top

For information on dithiophosphonate compounds, see: Hartung (1967); Van Zyl (2010); Van Zyl & Fackler (2000); Van Zyl & Woollins (2012); Liu et al. (2004); Gray et al. (2004); Aragoni et al. (2007); Arca et al. (1997). [Please give more information on what type of information is available from the different references, e.g. 'For the synthesis of dithiophosphonate salt derivatives, see: Van Zyl & Fackler (2000)']

Experimental top

A colorless methanol (40 ml) solution of NH4[S2P(OPr)(4-C6H4OEt)] (997 mg, 3.398 mmol) was prepared. A second green solution of NiCl2.6H20 (424 mg, 1.699 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a purple precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 x 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing purple powder. Purple crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 740 mg, 30%. M.p. 122°C.

31P NMR (CDCl3): δ (p.p.m.): 101.27. 1H NMR (CDCl3): δ (p.p.m.): 7.95 (2H, dd, J(31P-1H) = 13.96 Hz, J(1H -1H) = 8.80 Hz, o-ArH), 6.94 (2H, dd, J(31P-1H) = 8.82 Hz, J(1H -1H) =3.06 Hz, m-ArH), 4.26 (2H, dt, J(1H -1H) = 7.89 Hz, POCH2), 4.06 (2H, q, J(1H-1H) = 6.97 Hz, ArOCH2), 1.74 (2H, m, J(1H -1H) = 7.16 Hz, POCH2CH2), 1.41 (3H, t, J(1H -1H) = 6.98 Hz, ArOCH2CH3), 0.96 (3H, t, J(1H -1H) = 7.38 Hz, POCH2CH2CH3).

Refinement top

All hydrogen atoms were found in the difference electron density maps and were placed in idealized positions and refined with geometrical constraints, with C—H bond lengths in the range 0.95–1.00 Å. The structure was refined to R factor of 0.0193.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP molecular structure of the title complex, shown with 50% probability.
Bis[O-propyl (4-ethoxyphenyl)dithiophosphonato-κ2S,S']nickel(II) top
Crystal data top
[Ni(C11H16O2PS2)2]F(000) = 636
Mr = 609.37Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32798 reflections
a = 9.4227 (2) Åθ = 2.2–28.8°
b = 15.6479 (3) ŵ = 1.16 mm1
c = 9.5281 (2) ÅT = 173 K
β = 102.878 (1)°Block, purple
V = 1369.54 (5) Å30.40 × 0.34 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3446 independent reflections
Radiation source: fine-focus sealed tube3335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.655, Tmax = 0.883k = 2020
32798 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.5042P]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C11H16O2PS2)2]V = 1369.54 (5) Å3
Mr = 609.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4227 (2) ŵ = 1.16 mm1
b = 15.6479 (3) ÅT = 173 K
c = 9.5281 (2) Å0.40 × 0.34 × 0.11 mm
β = 102.878 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3335 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.883Rint = 0.020
32798 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.35 e Å3
S = 1.09Δρmin = 0.39 e Å3
3446 reflectionsAbsolute structure: ?
153 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29971 (11)0.07749 (6)0.10196 (10)0.01471 (18)
C20.31929 (11)0.15981 (7)0.15941 (11)0.01713 (19)
H20.38570.16880.24900.021*
C30.24319 (11)0.22889 (7)0.08761 (11)0.01787 (19)
H30.25760.28470.12750.021*
C40.14523 (11)0.21525 (7)0.04391 (11)0.01670 (19)
C50.12225 (11)0.13257 (7)0.10066 (11)0.0193 (2)
H50.05370.12330.18890.023*
C60.19899 (11)0.06433 (7)0.02877 (11)0.01805 (19)
H60.18350.00840.06800.022*
C70.08205 (13)0.36349 (7)0.07133 (13)0.0237 (2)
H7A0.05140.36720.02140.028*
H7B0.18450.38260.05600.028*
C80.01499 (13)0.41831 (8)0.18383 (15)0.0293 (3)
H8A0.11530.39730.20040.044*
H8B0.01130.47760.15010.044*
H8C0.01870.41560.27390.044*
C90.45560 (11)0.16125 (6)0.09836 (11)0.01833 (19)
H9A0.56070.16080.09830.022*
H9B0.44390.18170.19350.022*
C100.37431 (12)0.21896 (7)0.01933 (13)0.0217 (2)
H10A0.37590.19340.11400.026*
H10B0.42470.27480.01320.026*
C110.21705 (14)0.23324 (9)0.00963 (17)0.0339 (3)
H11A0.16840.17790.00930.051*
H11B0.16660.26680.09270.051*
H11C0.21490.26420.07930.051*
O10.06717 (8)0.27749 (5)0.12533 (8)0.02031 (15)
O20.39444 (8)0.07533 (5)0.06998 (8)0.01738 (15)
P10.39744 (3)0.010268 (16)0.19771 (3)0.01352 (6)
S20.30614 (3)0.057093 (16)0.35296 (3)0.01596 (6)
S40.40325 (3)0.020730 (18)0.69008 (3)0.01702 (6)
Ni10.50000.00000.50000.01246 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0179 (4)0.0127 (4)0.0136 (4)0.0006 (3)0.0037 (3)0.0009 (3)
C20.0203 (4)0.0160 (5)0.0145 (4)0.0006 (4)0.0025 (3)0.0016 (4)
C30.0214 (5)0.0135 (4)0.0188 (5)0.0003 (4)0.0049 (4)0.0014 (4)
C40.0166 (4)0.0159 (5)0.0185 (4)0.0024 (4)0.0058 (4)0.0034 (4)
C50.0198 (5)0.0195 (5)0.0167 (5)0.0009 (4)0.0003 (4)0.0002 (4)
C60.0218 (5)0.0142 (4)0.0169 (5)0.0003 (4)0.0016 (4)0.0017 (3)
C70.0246 (5)0.0148 (5)0.0315 (6)0.0027 (4)0.0060 (4)0.0044 (4)
C80.0228 (5)0.0204 (5)0.0436 (7)0.0046 (4)0.0050 (5)0.0106 (5)
C90.0231 (5)0.0132 (4)0.0191 (5)0.0042 (4)0.0054 (4)0.0005 (4)
C100.0220 (5)0.0158 (5)0.0283 (5)0.0011 (4)0.0079 (4)0.0049 (4)
C110.0239 (6)0.0256 (6)0.0537 (8)0.0051 (5)0.0119 (5)0.0057 (6)
O10.0216 (4)0.0159 (3)0.0225 (4)0.0040 (3)0.0029 (3)0.0041 (3)
O20.0258 (4)0.0121 (3)0.0136 (3)0.0032 (3)0.0030 (3)0.0007 (3)
P10.01689 (12)0.01224 (12)0.01123 (12)0.00026 (8)0.00272 (9)0.00008 (8)
S20.01740 (12)0.01656 (12)0.01382 (11)0.00237 (8)0.00325 (9)0.00129 (8)
S40.01565 (11)0.02265 (13)0.01304 (12)0.00131 (9)0.00382 (9)0.00118 (9)
Ni10.01398 (9)0.01286 (9)0.01053 (9)0.00043 (6)0.00272 (7)0.00086 (6)
Geometric parameters (Å, º) top
C1—C21.3957 (14)C9—C101.5089 (14)
C1—C61.4028 (13)C9—H9A0.9900
C1—P11.7865 (10)C9—H9B0.9900
C2—C31.3899 (14)C10—C111.5216 (16)
C2—H20.9500C10—H10A0.9900
C3—C41.3973 (14)C10—H10B0.9900
C3—H30.9500C11—H11A0.9800
C4—O11.3554 (12)C11—H11B0.9800
C4—C51.4004 (14)C11—H11C0.9800
C5—C61.3825 (14)O2—P11.5822 (7)
C5—H50.9500P1—S4i2.0026 (4)
C6—H60.9500P1—S22.0081 (3)
C7—O11.4364 (13)P1—Ni12.8310 (3)
C7—C81.5113 (16)S2—Ni12.2264 (2)
C7—H7A0.9900S4—P1i2.0026 (4)
C7—H7B0.9900S4—Ni12.2254 (2)
C8—H8A0.9800Ni1—S4i2.2254 (2)
C8—H8B0.9800Ni1—S2i2.2264 (2)
C8—H8C0.9800Ni1—P1i2.8310 (3)
C9—O21.4640 (12)
C2—C1—C6119.20 (9)C9—C10—H10B109.1
C2—C1—P1120.07 (7)C11—C10—H10B109.1
C6—C1—P1120.69 (8)H10A—C10—H10B107.8
C3—C2—C1121.07 (9)C10—C11—H11A109.5
C3—C2—H2119.5C10—C11—H11B109.5
C1—C2—H2119.5H11A—C11—H11B109.5
C2—C3—C4119.20 (9)C10—C11—H11C109.5
C2—C3—H3120.4H11A—C11—H11C109.5
C4—C3—H3120.4H11B—C11—H11C109.5
O1—C4—C3124.71 (9)C4—O1—C7118.10 (8)
O1—C4—C5115.18 (9)C9—O2—P1120.67 (6)
C3—C4—C5120.12 (9)O2—P1—C1100.55 (4)
C6—C5—C4120.23 (9)O2—P1—S4i114.86 (3)
C6—C5—H5119.9C1—P1—S4i113.69 (3)
C4—C5—H5119.9O2—P1—S2113.25 (3)
C5—C6—C1120.15 (9)C1—P1—S2113.57 (3)
C5—C6—H6119.9S4i—P1—S2101.530 (15)
C1—C6—H6119.9O2—P1—Ni1139.70 (3)
O1—C7—C8106.40 (10)C1—P1—Ni1119.74 (3)
O1—C7—H7A110.4S4i—P1—Ni151.409 (9)
C8—C7—H7A110.4S2—P1—Ni151.421 (9)
O1—C7—H7B110.4P1—S2—Ni183.742 (11)
C8—C7—H7B110.4P1i—S4—Ni183.894 (11)
H7A—C7—H7B108.6S4i—Ni1—S4180.0
C7—C8—H8A109.5S4i—Ni1—S2i91.498 (9)
C7—C8—H8B109.5S4—Ni1—S2i88.502 (9)
H8A—C8—H8B109.5S4i—Ni1—S288.502 (9)
C7—C8—H8C109.5S4—Ni1—S291.498 (9)
H8A—C8—H8C109.5S2i—Ni1—S2180.0
H8B—C8—H8C109.5S4i—Ni1—P1i135.304 (8)
O2—C9—C10107.37 (8)S4—Ni1—P1i44.696 (8)
O2—C9—H9A110.2S2i—Ni1—P1i44.837 (8)
C10—C9—H9A110.2S2—Ni1—P1i135.163 (8)
O2—C9—H9B110.2S4i—Ni1—P144.696 (8)
C10—C9—H9B110.2S4—Ni1—P1135.304 (8)
H9A—C9—H9B108.5S2i—Ni1—P1135.163 (8)
C9—C10—C11112.50 (10)S2—Ni1—P144.837 (8)
C9—C10—H10A109.1P1i—Ni1—P1180.0
C11—C10—H10A109.1
C6—C1—C2—C31.47 (15)C6—C1—P1—Ni1153.56 (7)
C1—C2—C3—C40.24 (15)O2—P1—S2—Ni1135.98 (3)
C2—C3—C4—C51.32 (15)C1—P1—S2—Ni1110.14 (4)
C3—C4—C5—C61.64 (16)S4i—P1—S2—Ni112.297 (14)
C4—C5—C6—C10.40 (16)P1i—S4—Ni1—S2i10.854 (12)
C2—C1—C6—C51.14 (15)P1i—S4—Ni1—S2169.146 (12)
O2—C9—C10—C1168.95 (12)P1—S2—Ni1—S4i10.827 (12)
C3—C4—O1—C72.04 (15)P1—S2—Ni1—S4169.173 (12)
C10—C9—O2—P1151.82 (7)O2—P1—Ni1—S4i83.72 (5)
C9—O2—P1—C1176.20 (7)C1—P1—Ni1—S4i97.82 (4)
C9—O2—P1—S4i61.34 (8)S2—P1—Ni1—S4i164.515 (17)
C9—O2—P1—S254.69 (8)O2—P1—Ni1—S496.28 (5)
C9—O2—P1—Ni12.44 (10)C1—P1—Ni1—S482.18 (4)
C2—C1—P1—O2156.81 (8)S2—P1—Ni1—S415.485 (17)
C6—C1—P1—O225.43 (9)O2—P1—Ni1—S2i99.21 (5)
C2—C1—P1—S4i33.54 (9)C1—P1—Ni1—S2i82.33 (4)
C6—C1—P1—S4i148.71 (7)S4i—P1—Ni1—S2i15.485 (17)
C2—C1—P1—S281.91 (8)O2—P1—Ni1—S280.79 (5)
C6—C1—P1—S295.85 (8)C1—P1—Ni1—S297.67 (4)
C2—C1—P1—Ni124.20 (10)S4i—P1—Ni1—S2164.515 (17)
Symmetry code: (i) x+1, y, z+1.
Acknowledgements top

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

references
References top

Aragoni, M. C., Arca, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V., Mancini, A., Soddu, S. & Verani, G. (2007). Dalton Trans. pp. 2127–2134.

Arca, M., Cornia, A., Devillanova, F. A., Fabretti, A. C., Isaia, F., Lippolis, V. & Verani, G. (1997). Inorg. Chim. Acta, 262, 81–84.

Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486.

Hartung, H. (1967). Z. Chem. 7, 241.

Liu, H.-L., Mao, H.-Y., Xu, C., Zhang, H.-Y., Hou, H.-W., Wu, Q., Zhu, Y., Ye, B.-X. & Yuan, L.-J. (2004). Polyhedron, 23, 1799–1804.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.

Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.

Van Zyl, W. E. & Woollins, J. D. (2012). JOURNAL NAME?. doi:10.1016/j.ccr.2012.10.010.2.