supplementary materials


gg2096 scheme

Acta Cryst. (2012). E68, m1480-m1481    [ doi:10.1107/S160053681204620X ]

Bis{(E)-3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropan-1-aminium} bis[[mu]-(E)-N-(3-amino-2,2-dimethylpropyl)-2-(hydroxyimino)propanamido(2-)]bis{[(E)-N-(3-amino-2,2-dimethylpropyl)-2-(hydroxyimino)propanamide]copper(II)} bis((E)-{3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropyl}carbamate) acetonitrile disolvate

A. I. Buvailo, A. V. Pavlishchuk, L. V. Penkova, N. V. Kotova and M. Haukka

Abstract top

The reaction between copper(II) nitrate and (E)-N-(3-amino-2,2-dimethylpropyl)-2-(hydroxyimino)propanamide led to the formation of the dinuclear centrosymmetric copper(II) title complex, (C8H18N3O2)2[Cu2(C8H15N3O2)2(C8H17N3O2)2](C9H16N3O4)2·2CH3CN, in which an inversion center is located at the midpoint of the Cu2 unit in the center of the neutral [Cu2(C8H15N3O2)2(C8H17N3O2)2] complex fragment. The Cu2+ ions are connected by two N-O bridging groups [Cu...Cu separation = 4.0608 (5) Å] while the CuII ions are five-coordinated in a square-pyramidal N4O coordination environment. The complex molecule co-crystallizes with two molecules of acetonitrile, two molecules of the protonated ligand (E)-3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropan-1-aminium and two negatively charged (E)-{3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropyl}carbamate anions, which were probably formed as a result of condensation between (E)-N-(3-amino-2,2-dimethylpropyl)-2-(hydroxyimino)propanamide and hydrogencarbonate anions. In the crystal, the complex fragment [Cu2(C8H15N3O2)2(C8H17N3O2)2] and the ion pair C8H18N3O2+.C9H16N3O4- are connected via an extended system of hydrogen bonds.

Comment top

Synthesis of the polydentate ligands is of particular interest due to their ability to form polynuclear complexes with different metal ions, which could be used in molecular magnetism (Thompson, 2002; Wörl et al., 2005; Moroz et al., 2010), bioinorganic modeling (Bauer-Siebenlist et al., 2005), catalysis (Krämer et al., 2000; Fritsky et al., 2001; Fritsky et al., 2003; Thallapally et al., 2010), luminescence materials (Cui et al., 2012) or sensors creation (Beauvais et al., 2000). Dinuclear copper(II) complexes have received a lot of attention as far as they are suitable models for catecholase oxidase activity (Monzani et al., 1998). It was found out that the separation between copper(II) ions dramatically influence the catalytic activity of the complex (Demmin et al., 1991). So far investigations connected with the mechanism of copper(II) catalyzed cathechol oxidation are scarce, synthesis and structure determination of dinuclear copper(II) complexes with different Cu(II)—Cu(II) separations is of interest.

Amide derivatives of 2-hydroxyiminopropanoic acid have been widely used as versatile polynucleating ligands, in particular, for preparation of bi- and polynuclear complexes (Moroz et al., 2008, 2010; 2012) and metal complexes with efficient stabilization of unusually high oxidation states of 3d-metal ions like copper(III) and nickel(III) (Fritsky et al., 1998; Kanderal et al., 2005; Fritsky et al., 2006).

The title compound [Cu2(C8H15N3O2)2(C8H17N3O2)2].2(C9H16N3O4)-. 2(C8H18N3O2)+. 2(CH3CN) (I) consist of a molecular complex fragment [Cu2(C8H15N3O2)2(C8H17N3O2)2], which is co-crystallized with two protonated ligands C8H18N3O2+, two deprotonated modified ligands C9H16N3O4- and two acetonitrile molecules. The complex fragment [Cu2(C8H15N3O2)2(C8H17N3O2)2] contains two copper(II) ions, which are connected via two N—O bridging groups of the two doubly deprotonated ligands C8H15N3O22-. The separation between copper (II) ions is 4.0608 (5) Å.

Each dianion C8H15N3O22- is coordinated to a copper(II) ion Cu1 via three nitrogen atoms N1, N2, N3 (from the oxime, amide and amino groups, respectively) and through oxygen atom O1 from the N—O group to a second copper(II) ion Cu1'. The coordination environment of each copper ion is completed by the nitrogen atom N4 from the monodentately coordinated neutral ligand molecule C8H17N3O2, thus resulting N4O donor set of copper(II) ions. The bond distances between copper(II) ion and nitrogen atoms N1 – N4 vary from the 1.957 (2) Å to 2.041 (2) Å, while the Cu1 – O1 bond is longer (2.4417 (1) Å), that is a consequence of the Jahn – Teller distortion. The copper(II) ions in (I) are located in the distorted square-pyramidal coordination environment, what confirms with low value of τ parameter (τ = 0.27) (Addison et al., 1984). The C8H15N3O22- dianions are coordinated to the copper(II) ions in a such way, that copper(II) and almost all non-hydrogen atoms of C8H15N3O22- lie in one plane. The biggest deviation from the Cu1N1N2N3 plane among atoms of C8H15N3O22- which are included in the chelate rings is observed for C5 (0.507 Å). Thereby, C8H15N3O22- dianions accept an envelope conformation with a C5 atom being a flap atom. In the contrast to the C8H15N3O22- dianions, both coordinated C8H17N3O2 ligand molecules and non-coordinated ion pair C8H18N3O2+.C9H16N3O4- do not form a flat pseudo-macrocycle, which is observed in C8H15N3O22- dianions possibly owing to the coordination of copper(II) ions in the plane of this ligand.

In both coordinated and non-coordinated ligands the oxime group is situated in the trans-position with respect to the amide group and anti- with respect to the amide carbonyl which was early shown in the structures of similiar compounds - amide derivatives of 2-hydroxyiminopropanoic acid (Skopenko et al., 1990; Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997). The C=N and N—O bond lengths in the oxime moiety are typical for 2-hydroxyiminopropanoic acid and its amide derivatives (Lampeka et al., 1989; Dvorkin et al., 1990a, 1990b; Dobosz et al., 1999; Mokhir et al., 2002). The C—N and C—N bond lengths in the amine parts of the ligands are normal for aliphatic amines (Petrusenko et al., 1997).

The non-coordinated anions C9H16N3O4- in (I) possibly were formed due to the condensation processes between initial ligand C8H17N3O2 and carbon dioxide, which could been captured from air. Capture of CO2 from air and its following coordination or condensation with ligands in the complex composition is not rare (Kovbasyuk et al., 1997; Pavlishchuk et al., 2002; Nanda et al., 2006). In the crystal packing of (I) complex fragment [Cu2(C8H15N3O2)2(C8H17N3O2)2] and the ion pair C8H18N3O2+.C9H16N3O4- are connected via extended system of hydrogen bonds. Almost all H atoms in hydroxy, amino and imino groups in I are included in the formation of hydrogen bonding.

Related literature top

For properties of polynuclear complexes, see: Krämer et al. (2000); Fritsky et al. (2001, 2003); Thompson (2002); Wörl et al. (2005); Bauer-Siebenlist et al. (2005); Thallapally et al. (2010); Cui et al. (2012); Beauvais et al. (2000). For studies of dinuclear copper(II) catecholase activity, see: Demmin et al. (1991); Monzani et al. (1998). For use of 2-hydroxyiminopropanoic acid derivatives as versatile ligands, see: Fritsky et al. (1998, 2006); Kanderal et al. (2005); Moroz et al. (2008, 2010, 2012); For the τ parameter, see: Addison et al. (1984). For related structures, see: Duda et al. (1997); Dobosz et al. (1999); Mokhir et al. (2002); Onindo et al. (1995); Petrusenko et al. (1997); Sliva et al. (1997); Dvorkin et al. (1990a,b); Lampeka et al. (1989); Skopenko et al. (1990). For carbon dioxide capture, see: Kovbasyuk et al. (1997); Pavlishchuk et al. (2002); Nanda et al. (2006).

Experimental top

Synthesis of the ligand C8H17N3O2

A solution of the ethyl ester of 2-hydroxyiminopropanoic acid (13.1 g, 0.1 mol) in methanol (50 ml) was added to 1,3-diamino-2,2-dimethylpropane (5.1 g, 5.9 ml, 0.05 mol) in methanol (25 ml). The obtained mixture was stirred at 60°C for 30 min and after that kept at room temperature for 72 h. The solution was dried by rotary evaporation, yielding an oily residue. Its subsequent treatment with a small amount of water resulted in a white powder which was collected, washed with cold water and air-dried. The resulting product is fairly soluble in alcohols and DMSO and poorly soluble in hot water. Yield: 15.1 g (81%). Analysis calculated for C8H17N3O2: C 51.31, H 9.15, N 22.44%; found: C 51.72, H 9.19, N 22.37%.

Synthesis of [{Cu(C8H15N3O2)(C8H17N3O2)}2]•[(C8H18N3O2)+(C9H15N3O4)-­]2•(CH3CN)2 (I)

A solution of copper (II) nitrate Cu(NO3)2.3H2O (0.242 g, 1 mmol) and C8H17N3O2 (0.561 g, 3 mmol) in methanol (10 ml) was stirred at 70°C for 30 min. To this 0.1M solution, NH4OH (3 ml) was added dropwise and the resulting mixture was stirred at 60°C during 30 min. Violet needle-like crystals suitable for X-ray analysis were obtained by salting out from the final solution with acetonitrile in a thin glass tube. Crystals were filtered out and then washed with acetonitrile and diethyl ester (yield 38%). Analysis calculated for C70H136Cu2N26O20: C 46.99, H 7.66, N 20.35%; found: C 45.11, H 8.13, N 19.42%.

Refinement top

The NH, NH2, NH3, and OH H atoms were located from the difference Fourier map but constrained to ride on their parent atom (Uiso = 1.5 (parent atom)). Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.98–0.99 Å, and Uiso = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of (I) with the atomic numbering scheme (thermal ellipsoids are drawn at the 50% probability level).
[Figure 2] Fig. 2. A view of the complete unit cell of the crystal structure of (I). Hydrogen atoms are omitted for clarity.
Bis{(E)-3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropan-1-aminium} bis[µ-(E)-N-(3-amino-2,2-dimethylpropyl)-2- (hydroxyimino)propanamido(2-)]bis{[(E)-N-(3-amino- 2,2-dimethylpropyl)-2-(hydroxyimino)propanamide]copper(II)} bis((E)-{3-[2-(hydroxyimino)propanamido]-2,2-dimethylpropyl}carbamate) acetonitrile disolvate top
Crystal data top
(C8H18N3O2)2[Cu2(C8H15N3O2)2(C8H17N3O2)2] (C9H16N3O4)2·2C2H3NZ = 1
Mr = 1791.14F(000) = 958
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3077 (3) ÅCell parameters from 23086 reflections
b = 12.9458 (6) Åθ = 2.9–27.1°
c = 19.8381 (6) ŵ = 0.55 mm1
α = 107.875 (1)°T = 120 K
β = 98.461 (2)°Block, purple
γ = 92.718 (2)°0.17 × 0.14 × 0.11 mm
V = 2239.34 (14) Å3
Data collection top
Nonius KappaCCD
diffractometer
9811 independent reflections
Radiation source: fine-focus sealed tube7089 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.074
Detector resolution: 9 pixels mm-1θmax = 27.1°, θmin = 3.9°
φ scans and ω scans with κ offseth = 1111
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1516
Tmin = 0.911, Tmax = 0.944l = 2525
32405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2 + 1.4972P]
where P = (Fo2 + 2Fc2)/3
9811 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
(C8H18N3O2)2[Cu2(C8H15N3O2)2(C8H17N3O2)2] (C9H16N3O4)2·2C2H3Nγ = 92.718 (2)°
Mr = 1791.14V = 2239.34 (14) Å3
Triclinic, P1Z = 1
a = 9.3077 (3) ÅMo Kα radiation
b = 12.9458 (6) ŵ = 0.55 mm1
c = 19.8381 (6) ÅT = 120 K
α = 107.875 (1)°0.17 × 0.14 × 0.11 mm
β = 98.461 (2)°
Data collection top
Nonius KappaCCD
diffractometer
9811 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
7089 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.944Rint = 0.074
32405 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.147Δρmax = 0.78 e Å3
S = 1.05Δρmin = 0.70 e Å3
9811 reflectionsAbsolute structure: ?
545 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.79591 (4)0.03835 (3)0.471381 (19)0.02474 (11)
O10.9971 (2)0.00520 (16)0.59142 (11)0.0270 (4)
O20.5459 (2)0.20172 (15)0.49801 (11)0.0282 (4)
O30.8343 (2)0.32441 (16)0.44650 (11)0.0316 (5)
O40.5320 (2)0.59018 (16)0.43927 (12)0.0341 (5)
H4O0.54440.66970.44590.051*
O51.0148 (2)0.06821 (17)0.05826 (11)0.0313 (5)
O61.0095 (2)0.12422 (16)0.27643 (11)0.0292 (4)
H6O1.01040.07920.32160.044*
O70.5645 (2)0.13752 (16)0.00244 (11)0.0299 (5)
O80.3750 (2)0.14635 (17)0.07834 (12)0.0346 (5)
O90.8251 (3)0.40092 (18)0.23329 (14)0.0489 (6)
O100.7238 (2)0.03350 (16)0.18399 (12)0.0324 (5)
H10O0.68540.02050.14660.049*
N10.8683 (3)0.02673 (18)0.54686 (13)0.0244 (5)
N20.6419 (3)0.08185 (18)0.44696 (13)0.0255 (5)
N30.7251 (3)0.08880 (19)0.38775 (13)0.0282 (5)
H3A0.78730.06760.35980.042*
H3B0.73110.16050.39340.042*
N40.9173 (3)0.18149 (18)0.53062 (13)0.0256 (5)
H4C0.93010.22150.49960.038*
H4D1.00610.15690.54100.038*
N50.8510 (3)0.46726 (19)0.54814 (14)0.0296 (5)
H5N0.82290.53930.56320.044*
N60.6524 (3)0.55520 (19)0.47341 (14)0.0301 (6)
N71.2786 (3)0.03651 (19)0.01429 (13)0.0272 (5)
H7D1.19360.02430.00020.041*
H7E1.32160.02330.00950.041*
H7F1.30400.08330.01810.041*
N81.0700 (3)0.07386 (19)0.16118 (14)0.0284 (5)
H8N1.08180.09100.20810.043*
N91.0319 (3)0.05481 (19)0.23722 (13)0.0263 (5)
N100.5814 (3)0.2593 (2)0.05759 (15)0.0345 (6)
H10N0.53390.28720.09510.052*
N110.7026 (3)0.30587 (19)0.12196 (14)0.0301 (6)
H11N0.66050.23920.09490.045*
N120.7126 (3)0.12354 (19)0.16016 (14)0.0278 (5)
N130.4204 (6)0.6143 (3)0.1678 (2)0.0866 (15)
C10.7829 (3)0.1065 (2)0.54971 (15)0.0255 (6)
C20.8168 (4)0.1687 (2)0.60094 (17)0.0322 (7)
H2A0.90030.21020.58940.048*
H2B0.73180.21910.59720.048*
H2C0.84060.11790.65010.048*
C30.6456 (3)0.1336 (2)0.49430 (15)0.0241 (6)
C40.5117 (3)0.1048 (2)0.39132 (16)0.0272 (6)
H4A0.43210.06550.41250.033*
H4B0.47990.18380.37550.033*
C50.5350 (3)0.0719 (2)0.32556 (16)0.0262 (6)
C60.3899 (4)0.0977 (3)0.27351 (18)0.0367 (7)
H6A0.35600.17500.26160.055*
H6B0.40350.08180.22950.055*
H6C0.31740.05280.29600.055*
C70.6526 (3)0.1355 (2)0.28899 (17)0.0300 (6)
H7A0.62030.21370.27190.045*
H7B0.74370.12180.32360.045*
H7C0.66900.11160.24820.045*
C80.5755 (3)0.0517 (2)0.34610 (16)0.0278 (6)
H8A0.56700.07220.30160.033*
H8B0.50450.09040.37490.033*
C90.8481 (3)0.2553 (2)0.58640 (16)0.0266 (6)
H9A0.82210.21550.61900.032*
H9B0.75600.27370.56280.032*
C100.9404 (3)0.3622 (2)0.63210 (16)0.0279 (6)
C111.0858 (4)0.3386 (2)0.66935 (18)0.0334 (7)
H11A1.14020.40740.70070.050*
H11B1.14330.30180.63300.050*
H11C1.06680.29160.69810.050*
C120.8516 (4)0.4234 (3)0.68900 (18)0.0369 (7)
H12A0.83240.37850.71910.055*
H12B0.75870.43820.66500.055*
H12C0.90710.49240.71910.055*
C130.9769 (3)0.4349 (2)0.58719 (17)0.0296 (6)
H13A1.03700.50160.61960.036*
H13B1.03700.39550.55210.036*
C140.7896 (3)0.4098 (2)0.48086 (17)0.0279 (6)
C150.6606 (3)0.4527 (2)0.44730 (16)0.0294 (6)
C160.5574 (4)0.3726 (3)0.38713 (19)0.0385 (8)
H16A0.46610.40490.37860.058*
H16B0.53710.30660.39980.058*
H16C0.60130.35370.34350.058*
C171.3337 (3)0.0845 (2)0.09269 (16)0.0264 (6)
H17A1.44010.10470.09990.032*
H17B1.31880.02800.11580.032*
C181.2620 (3)0.1849 (2)0.13065 (16)0.0285 (6)
C191.3412 (4)0.2267 (3)0.20854 (18)0.0379 (7)
H19A1.33090.16980.23110.057*
H19B1.29850.29150.23490.057*
H19C1.44490.24540.20950.057*
C201.2765 (4)0.2735 (2)0.09419 (18)0.0330 (7)
H20A1.23750.33960.12150.050*
H20B1.22160.24700.04510.050*
H20C1.37960.29020.09280.050*
C211.0987 (3)0.1567 (2)0.12810 (16)0.0279 (6)
H21A1.05610.22370.15290.033*
H21B1.04940.13070.07730.033*
C221.0300 (3)0.0316 (2)0.12427 (16)0.0258 (6)
C231.0066 (3)0.1032 (2)0.16946 (16)0.0256 (6)
C240.9528 (4)0.2213 (2)0.13348 (17)0.0334 (7)
H24A1.01450.26620.15490.050*
H24B0.95690.24090.08200.050*
H24C0.85180.23380.14000.050*
C250.5051 (4)0.1773 (2)0.04470 (17)0.0299 (7)
C260.7333 (4)0.2957 (3)0.02801 (19)0.0364 (7)
H26A0.78260.30570.06680.044*
H26B0.77820.23700.01260.044*
C270.7646 (3)0.4020 (3)0.03606 (19)0.0345 (7)
C280.9282 (4)0.4177 (3)0.0648 (2)0.0469 (9)
H28A0.95230.48730.10360.070*
H28B0.98210.41770.02590.070*
H28C0.95530.35790.08330.070*
C290.7196 (4)0.4993 (3)0.0118 (2)0.0422 (8)
H29A0.61760.48450.01240.063*
H29B0.78210.51050.02150.063*
H29C0.73010.56500.05380.063*
C300.6790 (3)0.3988 (2)0.09562 (18)0.0316 (7)
H30A0.70690.46710.13640.038*
H30B0.57360.39650.07740.038*
C310.7718 (3)0.3139 (2)0.18701 (17)0.0308 (7)
C320.7833 (3)0.2103 (2)0.20590 (16)0.0277 (6)
C330.8753 (4)0.2187 (3)0.27622 (17)0.0332 (7)
H33A0.82430.25520.31560.050*
H33B0.96860.26110.28130.050*
H33C0.89320.14550.27790.050*
C350.4618 (5)0.5755 (3)0.2090 (2)0.0498 (9)
C340.5186 (4)0.5279 (3)0.2630 (2)0.0509 (9)
H34A0.61310.50140.25390.076*
H34B0.45020.46690.26130.076*
H34C0.53130.58310.31060.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0265 (2)0.02338 (18)0.02322 (19)0.00097 (13)0.00151 (14)0.00753 (13)
O10.0222 (10)0.0343 (10)0.0229 (10)0.0009 (8)0.0021 (8)0.0076 (8)
O20.0275 (11)0.0248 (9)0.0332 (12)0.0000 (8)0.0076 (9)0.0096 (8)
O30.0405 (13)0.0261 (10)0.0273 (11)0.0055 (9)0.0080 (9)0.0059 (9)
O40.0378 (13)0.0279 (10)0.0354 (12)0.0057 (9)0.0006 (10)0.0107 (9)
O50.0335 (12)0.0354 (11)0.0243 (11)0.0005 (9)0.0031 (9)0.0098 (9)
O60.0332 (12)0.0321 (10)0.0245 (11)0.0014 (9)0.0074 (9)0.0115 (9)
O70.0327 (12)0.0276 (10)0.0310 (12)0.0034 (8)0.0065 (9)0.0112 (9)
O80.0354 (13)0.0332 (11)0.0326 (12)0.0019 (9)0.0009 (10)0.0093 (9)
O90.0582 (17)0.0293 (12)0.0479 (15)0.0004 (11)0.0110 (12)0.0058 (11)
O100.0368 (12)0.0290 (10)0.0321 (12)0.0003 (9)0.0025 (10)0.0125 (9)
N10.0246 (13)0.0239 (11)0.0220 (12)0.0006 (9)0.0030 (10)0.0041 (9)
N20.0243 (13)0.0256 (11)0.0265 (13)0.0001 (9)0.0043 (10)0.0083 (10)
N30.0296 (14)0.0273 (12)0.0284 (13)0.0021 (10)0.0035 (11)0.0109 (10)
N40.0271 (13)0.0233 (11)0.0260 (13)0.0024 (9)0.0052 (10)0.0069 (10)
N50.0338 (14)0.0238 (11)0.0284 (14)0.0028 (10)0.0016 (11)0.0058 (10)
N60.0309 (14)0.0294 (13)0.0329 (14)0.0049 (10)0.0062 (11)0.0135 (11)
N70.0225 (12)0.0307 (12)0.0267 (13)0.0024 (10)0.0023 (10)0.0074 (10)
N80.0324 (14)0.0309 (12)0.0231 (13)0.0021 (10)0.0083 (10)0.0089 (10)
N90.0244 (13)0.0316 (12)0.0264 (13)0.0025 (10)0.0056 (10)0.0137 (10)
N100.0347 (15)0.0373 (14)0.0362 (15)0.0028 (11)0.0061 (12)0.0185 (12)
N110.0297 (14)0.0254 (12)0.0350 (15)0.0005 (10)0.0038 (11)0.0104 (11)
N120.0257 (13)0.0279 (12)0.0317 (14)0.0023 (10)0.0052 (11)0.0118 (11)
N130.158 (5)0.056 (2)0.046 (2)0.013 (3)0.003 (3)0.0227 (19)
C10.0282 (15)0.0254 (13)0.0238 (15)0.0050 (11)0.0069 (12)0.0077 (11)
C20.0344 (17)0.0332 (15)0.0307 (17)0.0011 (13)0.0040 (13)0.0138 (13)
C30.0258 (15)0.0210 (12)0.0237 (14)0.0019 (11)0.0073 (11)0.0032 (11)
C40.0240 (15)0.0279 (14)0.0271 (15)0.0001 (11)0.0033 (12)0.0057 (12)
C50.0234 (15)0.0288 (14)0.0251 (15)0.0037 (11)0.0022 (12)0.0074 (12)
C60.0302 (17)0.0444 (18)0.0318 (18)0.0011 (13)0.0025 (13)0.0106 (14)
C70.0311 (16)0.0296 (14)0.0271 (16)0.0034 (12)0.0067 (13)0.0049 (12)
C80.0250 (15)0.0310 (14)0.0272 (16)0.0050 (12)0.0012 (12)0.0101 (12)
C90.0270 (15)0.0273 (14)0.0247 (15)0.0005 (11)0.0060 (12)0.0067 (12)
C100.0285 (16)0.0262 (14)0.0265 (15)0.0006 (11)0.0044 (12)0.0051 (12)
C110.0329 (17)0.0278 (14)0.0341 (17)0.0018 (12)0.0048 (13)0.0074 (13)
C120.0412 (19)0.0358 (16)0.0292 (17)0.0032 (14)0.0096 (14)0.0021 (13)
C130.0304 (16)0.0230 (13)0.0330 (17)0.0002 (11)0.0028 (13)0.0069 (12)
C140.0314 (16)0.0240 (13)0.0310 (16)0.0008 (11)0.0075 (13)0.0120 (12)
C150.0345 (17)0.0279 (14)0.0258 (16)0.0003 (12)0.0068 (13)0.0082 (12)
C160.042 (2)0.0308 (16)0.0371 (19)0.0056 (14)0.0031 (15)0.0072 (14)
C170.0220 (14)0.0324 (14)0.0256 (15)0.0024 (11)0.0038 (11)0.0105 (12)
C180.0265 (16)0.0297 (14)0.0289 (16)0.0002 (12)0.0063 (12)0.0083 (12)
C190.0328 (18)0.0425 (18)0.0328 (18)0.0012 (14)0.0020 (14)0.0061 (14)
C200.0327 (17)0.0296 (15)0.0380 (18)0.0005 (12)0.0111 (14)0.0107 (13)
C210.0292 (16)0.0284 (14)0.0273 (16)0.0028 (12)0.0073 (12)0.0096 (12)
C220.0196 (14)0.0328 (14)0.0253 (15)0.0039 (11)0.0030 (11)0.0097 (12)
C230.0184 (14)0.0304 (14)0.0275 (16)0.0020 (11)0.0033 (11)0.0086 (12)
C240.0373 (18)0.0308 (15)0.0297 (17)0.0004 (13)0.0080 (14)0.0057 (13)
C250.0352 (18)0.0266 (14)0.0298 (16)0.0080 (12)0.0119 (14)0.0079 (12)
C260.0319 (17)0.0404 (17)0.048 (2)0.0085 (13)0.0181 (15)0.0248 (15)
C270.0249 (16)0.0354 (16)0.050 (2)0.0013 (12)0.0072 (14)0.0231 (15)
C280.0253 (17)0.053 (2)0.071 (3)0.0008 (15)0.0069 (17)0.034 (2)
C290.0353 (19)0.0374 (17)0.062 (2)0.0030 (14)0.0099 (17)0.0261 (17)
C300.0291 (16)0.0271 (14)0.0401 (18)0.0018 (12)0.0044 (14)0.0135 (13)
C310.0266 (16)0.0303 (15)0.0327 (17)0.0020 (12)0.0047 (13)0.0061 (13)
C320.0247 (15)0.0326 (15)0.0259 (15)0.0046 (12)0.0075 (12)0.0076 (12)
C330.0377 (18)0.0357 (16)0.0239 (16)0.0035 (13)0.0061 (13)0.0060 (13)
C350.074 (3)0.0369 (18)0.037 (2)0.0001 (18)0.0112 (19)0.0097 (16)
C340.046 (2)0.059 (2)0.052 (2)0.0056 (18)0.0101 (18)0.0238 (19)
Geometric parameters (Å, º) top
Cu1—N11.984 (2)C8—H8A0.9900
Cu1—N21.957 (2)C8—H8B0.9900
Cu1—N32.000 (2)C9—C101.537 (4)
Cu1—N42.041 (2)C9—H9A0.9900
Cu1—O1i2.441 (2)C9—H9B0.9900
O1—N11.343 (3)C10—C111.535 (4)
O2—C31.276 (3)C10—C131.539 (4)
O3—C141.234 (3)C10—C121.540 (4)
O4—N61.390 (3)C11—H11A0.9800
O4—H4O0.9950C11—H11B0.9800
O5—C221.232 (4)C11—H11C0.9800
O6—N91.384 (3)C12—H12A0.9800
O6—H6O0.9050C12—H12B0.9800
O7—C251.271 (4)C12—H12C0.9800
O8—C251.275 (4)C13—H13A0.9900
O9—C311.240 (4)C13—H13B0.9900
O10—N121.389 (3)C14—C151.499 (4)
O10—H10O0.8640C15—C161.494 (4)
N1—C11.293 (4)C16—H16A0.9800
N2—C31.308 (4)C16—H16B0.9800
N2—C41.465 (4)C16—H16C0.9800
N3—C81.485 (4)C17—C181.526 (4)
N3—H3A0.8568C17—H17A0.9900
N3—H3B0.8984C17—H17B0.9900
N4—C91.474 (4)C18—C191.529 (4)
N4—H4C0.9349C18—C211.536 (4)
N4—H4D0.9174C18—C201.543 (4)
N5—C141.337 (4)C19—H19A0.9800
N5—C131.458 (4)C19—H19B0.9800
N5—H5N0.9502C19—H19C0.9800
N6—C151.279 (4)C20—H20A0.9800
N7—C171.487 (4)C20—H20B0.9800
N7—H7D0.7915C20—H20C0.9800
N7—H7E0.8748C21—H21A0.9900
N7—H7F1.0512C21—H21B0.9900
N8—C221.341 (4)C22—C231.503 (4)
N8—C211.452 (4)C23—C241.499 (4)
N8—H8N0.8760C24—H24A0.9800
N9—C231.277 (4)C24—H24B0.9800
N10—C251.358 (4)C24—H24C0.9800
N10—C261.445 (4)C26—C271.541 (5)
N10—H10N0.9806C26—H26A0.9900
N11—C311.326 (4)C26—H26B0.9900
N11—C301.465 (4)C27—C281.526 (5)
N11—H11N0.8987C27—C301.529 (4)
N12—C321.283 (4)C27—C291.535 (4)
N13—C351.115 (5)C28—H28A0.9800
C1—C21.488 (4)C28—H28B0.9800
C1—C31.507 (4)C28—H28C0.9800
C2—H2A0.9800C29—H29A0.9800
C2—H2B0.9800C29—H29B0.9800
C2—H2C0.9800C29—H29C0.9800
C4—C51.531 (4)C30—H30A0.9900
C4—H4A0.9900C30—H30B0.9900
C4—H4B0.9900C31—C321.504 (4)
C5—C61.528 (4)C32—C331.496 (4)
C5—C71.535 (4)C33—H33A0.9800
C5—C81.538 (4)C33—H33B0.9800
C6—H6A0.9800C33—H33C0.9800
C6—H6B0.9800C35—C341.442 (6)
C6—H6C0.9800C34—H34A0.9800
C7—H7A0.9800C34—H34B0.9800
C7—H7B0.9800C34—H34C0.9800
C7—H7C0.9800
N1—Cu1—N281.63 (10)H12B—C12—H12C109.5
N1—Cu1—N3173.95 (10)N5—C13—C10115.2 (2)
N1—Cu1—N489.54 (10)N5—C13—H13A108.5
N2—Cu1—N395.35 (10)C10—C13—H13A108.5
N2—Cu1—N4157.75 (10)N5—C13—H13B108.5
N3—Cu1—N495.10 (10)C10—C13—H13B108.5
N6—O4—H4O112.4H13A—C13—H13B107.5
N9—O6—H6O104.4O3—C14—N5122.8 (3)
N12—O10—H10O103.6O3—C14—C15119.9 (3)
C1—N1—O1120.8 (2)N5—C14—C15117.3 (2)
C1—N1—Cu1114.9 (2)N6—C15—C16127.2 (3)
O1—N1—Cu1124.36 (17)N6—C15—C14115.6 (3)
C3—N2—C4117.5 (2)C16—C15—C14117.2 (3)
C3—N2—Cu1114.07 (19)C15—C16—H16A109.5
C4—N2—Cu1127.20 (18)C15—C16—H16B109.5
C8—N3—Cu1120.40 (18)H16A—C16—H16B109.5
C8—N3—H3A109.0C15—C16—H16C109.5
Cu1—N3—H3A103.3H16A—C16—H16C109.5
C8—N3—H3B101.7H16B—C16—H16C109.5
Cu1—N3—H3B119.6N7—C17—C18114.9 (2)
H3A—N3—H3B101.0N7—C17—H17A108.5
C9—N4—Cu1115.68 (18)C18—C17—H17A108.5
C9—N4—H4C103.7N7—C17—H17B108.5
Cu1—N4—H4C107.6C18—C17—H17B108.5
C9—N4—H4D122.4H17A—C17—H17B107.5
Cu1—N4—H4D100.8C17—C18—C19106.8 (2)
H4C—N4—H4D105.7C17—C18—C21111.3 (2)
C14—N5—C13123.0 (2)C19—C18—C21110.2 (2)
C14—N5—H5N113.3C17—C18—C20110.4 (2)
C13—N5—H5N121.7C19—C18—C20110.3 (3)
C15—N6—O4112.8 (3)C21—C18—C20107.8 (2)
C17—N7—H7D120.2C18—C19—H19A109.5
C17—N7—H7E95.0C18—C19—H19B109.5
H7D—N7—H7E112.0H19A—C19—H19B109.5
C17—N7—H7F116.4C18—C19—H19C109.5
H7D—N7—H7F98.1H19A—C19—H19C109.5
H7E—N7—H7F116.5H19B—C19—H19C109.5
C22—N8—C21124.0 (3)C18—C20—H20A109.5
C22—N8—H8N115.8C18—C20—H20B109.5
C21—N8—H8N120.2H20A—C20—H20B109.5
C23—N9—O6112.8 (2)C18—C20—H20C109.5
C25—N10—C26124.3 (3)H20A—C20—H20C109.5
C25—N10—H10N116.8H20B—C20—H20C109.5
C26—N10—H10N118.2N8—C21—C18113.4 (2)
C31—N11—C30124.3 (3)N8—C21—H21A108.9
C31—N11—H11N116.0C18—C21—H21A108.9
C30—N11—H11N119.4N8—C21—H21B108.9
C32—N12—O10112.4 (2)C18—C21—H21B108.9
N1—C1—C2124.0 (3)H21A—C21—H21B107.7
N1—C1—C3113.6 (2)O5—C22—N8123.0 (3)
C2—C1—C3122.4 (2)O5—C22—C23122.0 (3)
C1—C2—H2A109.5N8—C22—C23115.0 (3)
C1—C2—H2B109.5N9—C23—C24125.5 (3)
H2A—C2—H2B109.5N9—C23—C22115.0 (2)
C1—C2—H2C109.5C24—C23—C22119.5 (3)
H2A—C2—H2C109.5C23—C24—H24A109.5
H2B—C2—H2C109.5C23—C24—H24B109.5
O2—C3—N2126.7 (3)H24A—C24—H24B109.5
O2—C3—C1118.6 (2)C23—C24—H24C109.5
N2—C3—C1114.7 (2)H24A—C24—H24C109.5
N2—C4—C5113.8 (2)H24B—C24—H24C109.5
N2—C4—H4A108.8O7—C25—O8122.7 (3)
C5—C4—H4A108.8O7—C25—N10118.6 (3)
N2—C4—H4B108.8O8—C25—N10118.7 (3)
C5—C4—H4B108.8N10—C26—C27116.3 (3)
H4A—C4—H4B107.7N10—C26—H26A108.2
C6—C5—C4107.9 (2)C27—C26—H26A108.2
C6—C5—C7110.0 (3)N10—C26—H26B108.2
C4—C5—C7110.4 (2)C27—C26—H26B108.2
C6—C5—C8106.5 (2)H26A—C26—H26B107.4
C4—C5—C8111.3 (2)C28—C27—C30110.1 (3)
C7—C5—C8110.7 (2)C28—C27—C29109.8 (3)
C5—C6—H6A109.5C30—C27—C29107.0 (3)
C5—C6—H6B109.5C28—C27—C26107.7 (3)
H6A—C6—H6B109.5C30—C27—C26111.9 (2)
C5—C6—H6C109.5C29—C27—C26110.3 (3)
H6A—C6—H6C109.5C27—C28—H28A109.5
H6B—C6—H6C109.5C27—C28—H28B109.5
C5—C7—H7A109.5H28A—C28—H28B109.5
C5—C7—H7B109.5C27—C28—H28C109.5
H7A—C7—H7B109.5H28A—C28—H28C109.5
C5—C7—H7C109.5H28B—C28—H28C109.5
H7A—C7—H7C109.5C27—C29—H29A109.5
H7B—C7—H7C109.5C27—C29—H29B109.5
N3—C8—C5113.8 (2)H29A—C29—H29B109.5
N3—C8—H8A108.8C27—C29—H29C109.5
C5—C8—H8A108.8H29A—C29—H29C109.5
N3—C8—H8B108.8H29B—C29—H29C109.5
C5—C8—H8B108.8N11—C30—C27114.1 (2)
H8A—C8—H8B107.7N11—C30—H30A108.7
N4—C9—C10115.8 (2)C27—C30—H30A108.7
N4—C9—H9A108.3N11—C30—H30B108.7
C10—C9—H9A108.3C27—C30—H30B108.7
N4—C9—H9B108.3H30A—C30—H30B107.6
C10—C9—H9B108.3O9—C31—N11124.4 (3)
H9A—C9—H9B107.4O9—C31—C32118.2 (3)
C11—C10—C9110.6 (2)N11—C31—C32117.4 (3)
C11—C10—C13107.2 (2)N12—C32—C33126.5 (3)
C9—C10—C13112.6 (2)N12—C32—C31116.7 (3)
C11—C10—C12109.7 (3)C33—C32—C31116.8 (3)
C9—C10—C12107.2 (2)C32—C33—H33A109.5
C13—C10—C12109.5 (2)C32—C33—H33B109.5
C10—C11—H11A109.5H33A—C33—H33B109.5
C10—C11—H11B109.5C32—C33—H33C109.5
H11A—C11—H11B109.5H33A—C33—H33C109.5
C10—C11—H11C109.5H33B—C33—H33C109.5
H11A—C11—H11C109.5N13—C35—C34178.4 (5)
H11B—C11—H11C109.5C35—C34—H34A109.5
C10—C12—H12A109.5C35—C34—H34B109.5
C10—C12—H12B109.5H34A—C34—H34B109.5
H12A—C12—H12B109.5C35—C34—H34C109.5
C10—C12—H12C109.5H34A—C34—H34C109.5
H12A—C12—H12C109.5H34B—C34—H34C109.5
N2—Cu1—N1—C15.1 (2)C12—C10—C13—N560.3 (3)
N4—Cu1—N1—C1154.4 (2)C13—N5—C14—O30.2 (4)
N2—Cu1—N1—O1173.3 (2)C13—N5—C14—C15179.9 (3)
N4—Cu1—N1—O127.2 (2)O4—N6—C15—C160.3 (4)
N1—Cu1—N2—C39.48 (19)O4—N6—C15—C14179.0 (2)
N3—Cu1—N2—C3175.8 (2)O3—C14—C15—N6156.0 (3)
N4—Cu1—N2—C358.1 (3)N5—C14—C15—N624.2 (4)
N1—Cu1—N2—C4176.6 (2)O3—C14—C15—C1623.3 (4)
N3—Cu1—N2—C48.7 (2)N5—C14—C15—C16156.5 (3)
N4—Cu1—N2—C4109.0 (3)N7—C17—C18—C19175.7 (2)
N2—Cu1—N3—C815.5 (2)N7—C17—C18—C2164.0 (3)
N4—Cu1—N3—C8144.8 (2)N7—C17—C18—C2055.7 (3)
N2—Cu1—N4—C918.8 (4)C22—N8—C21—C1899.9 (3)
N1—Cu1—N4—C985.0 (2)C17—C18—C21—N859.0 (3)
N3—Cu1—N4—C998.9 (2)C19—C18—C21—N859.3 (3)
O1—N1—C1—C20.2 (4)C20—C18—C21—N8179.8 (2)
Cu1—N1—C1—C2178.6 (2)C21—N8—C22—O50.5 (4)
O1—N1—C1—C3178.1 (2)C21—N8—C22—C23179.7 (2)
Cu1—N1—C1—C30.3 (3)O6—N9—C23—C242.2 (4)
C4—N2—C3—O21.0 (4)O6—N9—C23—C22179.7 (2)
Cu1—N2—C3—O2167.4 (2)O5—C22—C23—N9177.3 (3)
C4—N2—C3—C1179.7 (2)N8—C22—C23—N91.9 (4)
Cu1—N2—C3—C111.9 (3)O5—C22—C23—C244.5 (4)
N1—C1—C3—O2171.6 (2)N8—C22—C23—C24176.3 (3)
C2—C1—C3—O210.0 (4)C26—N10—C25—O78.3 (4)
N1—C1—C3—N27.7 (3)C26—N10—C25—O8174.4 (3)
C2—C1—C3—N2170.6 (3)C25—N10—C26—C27102.4 (3)
C3—N2—C4—C5161.1 (2)N10—C26—C27—C28172.9 (3)
Cu1—N2—C4—C532.3 (3)N10—C26—C27—C3051.7 (4)
N2—C4—C5—C6178.5 (2)N10—C26—C27—C2967.3 (3)
N2—C4—C5—C761.3 (3)C31—N11—C30—C27111.7 (3)
N2—C4—C5—C862.0 (3)C28—C27—C30—N1164.4 (3)
Cu1—N3—C8—C547.1 (3)C29—C27—C30—N11176.4 (3)
C6—C5—C8—N3171.1 (2)C26—C27—C30—N1155.4 (4)
C4—C5—C8—N371.6 (3)C30—N11—C31—O90.2 (5)
C7—C5—C8—N351.5 (3)C30—N11—C31—C32178.6 (3)
Cu1—N4—C9—C10178.84 (19)O10—N12—C32—C332.8 (4)
N4—C9—C10—C1157.4 (3)O10—N12—C32—C31176.9 (2)
N4—C9—C10—C1362.5 (3)O9—C31—C32—N12172.1 (3)
N4—C9—C10—C12177.0 (2)N11—C31—C32—N126.7 (4)
C14—N5—C13—C1091.1 (3)O9—C31—C32—C337.6 (4)
C11—C10—C13—N5179.3 (2)N11—C31—C32—C33173.6 (3)
C9—C10—C13—N558.8 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2ii1.001.672.574 (3)150
O6—H6O···O1i0.911.712.613 (3)174
N3—H3A···O1i0.862.452.938 (3)116
N3—H3B···O30.902.162.978 (3)151
N4—H4C···O30.932.092.908 (3)145
N4—H4D···O10.922.472.967 (3)115
N4—H4D···N1i0.922.503.123 (3)126
N7—H7D···O5iii0.792.293.002 (3)149
N7—H7D···O50.792.603.109 (3)123
N7—H7E···O7iii0.871.842.705 (3)172
N7—H7F···O8iv1.051.822.859 (3)169
N7—H7F···O7iv1.052.432.981 (3)112
N10—H10N···N13v0.982.273.107 (5)143
N11—H11N···O70.901.952.773 (3)151
O10—H10O···O8vi0.861.772.626 (3)169
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y, z.
Selected bond lengths (Å) top
Cu1—N11.984 (2)Cu1—N42.041 (2)
Cu1—N21.957 (2)Cu1—O1i2.441 (2)
Cu1—N32.000 (2)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O2ii1.001.672.574 (3)149.6
O6—H6O···O1i0.911.712.613 (3)174.0
N3—H3A···O1i0.862.452.938 (3)116.4
N3—H3B···O30.902.162.978 (3)150.8
N4—H4C···O30.932.092.908 (3)145.1
N4—H4D···O10.922.472.967 (3)114.5
N4—H4D···N1i0.922.503.123 (3)125.9
N7—H7D···O5iii0.792.293.002 (3)149.2
N7—H7D···O50.792.603.109 (3)123.3
N7—H7E···O7iii0.871.842.705 (3)171.5
N7—H7F···O8iv1.051.822.859 (3)168.9
N7—H7F···O7iv1.052.432.981 (3)111.5
N10—H10N···N13v0.982.273.107 (5)142.6
N11—H11N···O70.901.952.773 (3)150.6
O10—H10O···O8vi0.861.772.626 (3)169.2
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y, z.
Acknowledgements top

This work was supported by the Russian Fund for Basic Research (grants11–03-00262 and 11–03-90417), the Federal Targeted Program Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013 (contract P1294 from 09/06/2010) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged.

references
References top

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Bauer-Siebenlist, B., Meyer, F., Farkas, E., Vidovic, D. & Dechert, S. (2005). Chem. Eur. J. 15, 4349–4360.

Beauvais, L. G., Shores, M. P. & Long, J. R. (2000). J. Am. Chem. Soc. 122, 2763–2772.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Cui, Y., Yue, Y., Qian, G. & Chen, B. (2012). Chem. Rev. 112, 1126–1162.

Demmin, T. R., Swerdloff, M. D. & Rogic, M. M. (1991). J. Am. Chem. Soc. 103, 5795–5804.

Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–749.

Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.

Dvorkin, A. A., Fritskii, I. O., Simonov, I. A., Lampeka, R. D., Mazus, M. D. & Malinovskii, T. I. (1990a). Dokl. Akad. Nauk SSSR, 310, 87–90.

Dvorkin, A. A., Simonov, I. A., Skopenko, V. V., Fritskii, I. O. & Lampeka, R. D. (1990b). Dokl. Akad. Nauk SSSR, 313, 98–101.

Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.

Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.

Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.

Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.

Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.

Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–1729.

Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.

Lampeka, R. D., Dvorkin, A. A., Simonov, Y. A., Fritsky, I. O. & Skopenko, V. V. (1989). Ukr. Khim. Zh. 55, 458–461.

Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.

Monzani, E., Quinti, L., Perotti, A., Casella, L., Gulotti, M., Randaccio, L., Geremia, S., Nardin, G., Faleschini, P. & Tabbi, G. (1998). Inorg. Chem. 37, 553–562.

Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.

Moroz, Y. S., Kulon, K., Haukka, M., Gumienna-Kontecka, E., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2008). Inorg. Chem. 47, 5656–5665.

Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.

Nanda, P. K., Bera, M., Aromí, G. & Ray, D. (2006). Polyhedron, 25, 2791–2799.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Pavlishchuk, V., Birkelbach, F., Weyhermüller, T., Wieghardt, K. & Chaudhuri, P. (2002). Inorg. Chem. 41, 4405–4416.

Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.

Sheldrick, G. M. (2008). Acta Cryst. A 64, 112–122.

Skopenko, V. V., Lampeka, R. D. & Fritskii, I. O. (1990). Dokl. Akad. Nauk SSSR, 312, 123–128.

Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.

Thallapally, P. K., Fernandez, C. A., Motkuri, R. K., Nune, S. K., Liub, J. & Pedenb, C. H. F. (2010). Dalton Trans. 39, 1692–1694.

Thompson, L. K. (2002). Coord. Chem. Rev. 233–234, 193–206.

Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.