supplementary materials


gk2529 scheme

Acta Cryst. (2012). E68, m1502    [ doi:10.1107/S1600536812046818 ]

Bis[O-isopropyl (4-ethoxyphenyl)dithiophosphonato-[kappa]2S,S']lead(II)

S. Sewpersad and W. E. Van Zyl

Abstract top

The title compound, [Pb(C11H16O2PS2)2], is a neutral four-coordinate mononuclear complex with a distorted square-pyramidal geometry of the PbS4 core. The apical PbII atom of each pyramid is 1.33059 (3) Å above the basal S4 plane. The metal atom is surrounded by two chelating dithiophosphonate ligands binding through the S-donor atoms. The ligands are anisobidentate as the pyramid is comprised of Pb-S bond lengths that vary substantially [2.6999 (7), 2.7128 (6), 2.8877 (7) and 2.9472 (7) Å], clearly indicating two short and two longer bond lengths. The P-S bond lengths are also paired as shorter [1.9959 (9) and 1.9877 (8) Å] and slightly longer [2.0115 (9) and 2.0245 (9) Å], indicating an anisobidentate nature of the ligand whereby the shorter P-S bond has more double-bond character than the other. The S-Pb-S (chelating) bond angles range from 71.841 (18) to 72.692 (19)°, whilst the Pb-S-P bond angles range from 84.70 (3) to 90.51 (3)°.

Comment top

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. Several sub-categories are known which include the dithiophosphato [S2P(OR)2]¯, (R = typically alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed. Lead dithiophosphonate complexes have only been developed during the past 10 years (Gray et al., 2003; 2004) and the solid-state structure of the lead complexes deviate substantially from typical 4-coordinate transition-metals such as Ni(II), Cd(II), Hg(II) of the same ligand.

The title complex exhibits a structure that is built up of distorted square pyramids in dimeric pairs. The dimeric pair is characterised by intermolecular interactions between the Pb atom of one monomer with a S atom of adjacent unit, containing a Pb···S distance of 3.619 Å. Similar intermolecular interactions occur between the Pb atom of one monomeric unit and four carbon atoms in an adjacent aromatic ring in the Pb-Ar (Ar = aromatic ring) bond distance range of 3.421-3.597 Å. A related structure with a different alkoxy group was previously reported (Gray et al., 2004), showing similar inter Pb···S and Pb···Ar interactions, and intermolecular Pb-S bond lenghts. It was postulated that the aforementioned Pb···Ar interactions stabilized the dimeric structure. The structure reported by Gray et al. (2004) adopts a similar molecular unit, the lead also resides in the centre of a distorted pyramid, 1.30 Å above the basal S4 plane. General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000).

Related literature top

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For similar lead(II) dithiophosphonate complexes, see: Gray et al. (2003, 2004).

Experimental top

A colorless methanol (40 ml) solution of NH4[S2P(OiPr)(4-C6H4OEt)] (1.010 g, 3.443 mmol) was prepared. Another solution of Pb(NO3)2 (0.570 g, 1.721 mmol) in deionized water (20 ml) was prepared, and added to the colorless solution with stirring over a period of 5 min. This resulted in a white precipitate, which proved to be the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 x 10 ml) and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing white powder. Colorless crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 0.926 g, 71%. M.p. 397–398 K.

31P NMR (CDCl3): δ (p.p.m.): 94.20. 1H NMR (CDCl3): δ (p.p.m.): 7.89(2H, dd, o-ArH), 6.89(2H, dd, m-ArH), 5.01(1H, d quart, CH), 4.03(2H, quart, ArOCH2), 1.39(3H, t, ArOCH2CH3), 1.32(6H, d, CH3). 13C NMR (CDCl3): δ (p.p.m.): 161.97 (p-ArC), 133.32 (ipso-Ar—C), 131.57 (m-ArC), 114.32 (o-ArC), 71.34 (CH), 64.03(ArOCH2), 24.85 (CH3), 14.91 (ArOCH2CH3).

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints and constrained to ride on their parent atoms, with C–H = 0.95–1 00 Å,and Uiso(Haryl) = 1.2×UeqCaryl and Uiso(Hmethyl) = 1.5×UeqCmethyl.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids shown at the 50% probability level. H-atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of a dimeric pair of the title complex showing intermolecular Pb•••S and Pb•••Ar interactions.
Bis[O-isopropyl (4-ethoxyphenyl)dithiophosphonato- κ2S,S']lead(II) top
Crystal data top
[Pb(C11H16O2PS2)2]Z = 2
Mr = 757.85F(000) = 744
Triclinic, P1?e
Hall symbol: -P 1Dx = 1.744 Mg m3
a = 10.2092 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7016 (10) ÅCell parameters from 36710 reflections
c = 12.9915 (10) Åθ = 1.6–28.4°
α = 89.297 (2)°µ = 6.27 mm1
β = 85.016 (2)°T = 173 K
γ = 69.034 (1)°Block, colourless
V = 1443.5 (2) Å30.16 × 0.14 × 0.11 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
7212 independent reflections
Radiation source: fine-focus sealed tube6564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
0.5° φ scans and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.434, Tmax = 0.546k = 1515
36710 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.042P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
7212 reflectionsΔρmax = 0.61 e Å3
304 parametersΔρmin = 0.63 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pb(C11H16O2PS2)2]γ = 69.034 (1)°
Mr = 757.85V = 1443.5 (2) Å3
Triclinic, P1Z = 2
a = 10.2092 (8) ÅMo Kα radiation
b = 11.7016 (10) ŵ = 6.27 mm1
c = 12.9915 (10) ÅT = 173 K
α = 89.297 (2)°0.16 × 0.14 × 0.11 mm
β = 85.016 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
6564 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.037
Tmin = 0.434, Tmax = 0.546θmax = 28.4°
36710 measured reflectionsStandard reflections: 0
7212 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.61 e Å3
S = 1.03Δρmin = 0.63 e Å3
7212 reflectionsAbsolute structure: ?
304 parametersFlack parameter: ?
? restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.563161 (9)0.892734 (7)0.676272 (7)0.02692 (3)
S10.48642 (6)0.83844 (6)0.47888 (5)0.03000 (13)
S20.80447 (7)0.77787 (6)0.55716 (5)0.03150 (13)
S30.55200 (7)0.68031 (6)0.75505 (5)0.03173 (14)
S40.75140 (7)0.82120 (5)0.84420 (5)0.03020 (13)
P10.69313 (6)0.77422 (5)0.43769 (5)0.02499 (13)
P20.67269 (7)0.68943 (5)0.86809 (5)0.02494 (13)
O10.8185 (2)1.06377 (17)0.08990 (14)0.0368 (4)
O20.74190 (18)0.64074 (14)0.38776 (13)0.0314 (4)
O30.31553 (18)0.75446 (15)1.26420 (13)0.0315 (4)
O40.79180 (18)0.55982 (14)0.88024 (13)0.0299 (4)
C10.7390 (2)0.8566 (2)0.33187 (18)0.0244 (5)
C20.7854 (2)0.9519 (2)0.35221 (19)0.0280 (5)
H20.79920.96760.42130.034*
C30.8118 (3)1.0243 (2)0.27399 (19)0.0295 (5)
H30.84161.08980.28940.035*
C40.7941 (3)1.0000 (2)0.17254 (19)0.0293 (5)
C50.7474 (3)0.9048 (2)0.15114 (19)0.0294 (5)
H50.73500.88850.08190.035*
C60.7191 (3)0.8344 (2)0.22993 (18)0.0276 (5)
H60.68610.77070.21480.033*
C70.8657 (3)1.1634 (3)0.1081 (2)0.0438 (7)
H7A0.95671.13290.13940.053*
H7B0.79581.22510.15580.053*
C80.8824 (4)1.2188 (3)0.0058 (2)0.0507 (8)
H8A0.94261.15470.04320.076*
H8B0.92571.28030.01390.076*
H8C0.78981.25780.02030.076*
C90.7074 (3)0.5436 (2)0.4444 (2)0.0361 (6)
H90.65540.57760.51250.043*
C100.6158 (4)0.5027 (3)0.3833 (3)0.0567 (9)
H10A0.53330.57350.36810.085*
H10B0.58500.44370.42300.085*
H10C0.66840.46390.31850.085*
C110.8454 (4)0.4454 (3)0.4627 (3)0.0702 (11)
H11A0.89520.40930.39620.105*
H11B0.82810.38170.50540.105*
H11C0.90290.48100.49830.105*
C120.5720 (3)0.7089 (2)0.99137 (18)0.0251 (5)
C130.4855 (3)0.8252 (2)1.02436 (19)0.0294 (5)
H130.48530.89330.98370.035*
C140.3992 (3)0.8444 (2)1.11533 (19)0.0297 (5)
H140.34140.92511.13760.036*
C150.3976 (3)0.7450 (2)1.17388 (18)0.0269 (5)
C160.4827 (3)0.6269 (2)1.14110 (19)0.0307 (5)
H160.48110.55881.18110.037*
C170.5694 (3)0.6088 (2)1.05057 (19)0.0297 (5)
H170.62750.52811.02830.036*
C180.2206 (3)0.8742 (2)1.2982 (2)0.0331 (6)
H18A0.15230.90981.24640.040*
H18B0.27380.92901.30690.040*
C190.1447 (3)0.8615 (2)1.3993 (2)0.0375 (6)
H19A0.08490.81411.38850.056*
H19B0.08610.94291.42730.056*
H19C0.21340.81931.44810.056*
C200.9080 (3)0.5123 (2)0.79867 (19)0.0305 (5)
H200.89640.57340.74250.037*
C210.9019 (3)0.3954 (2)0.7559 (2)0.0418 (7)
H21A0.91660.33470.81050.063*
H21B0.97560.36380.69900.063*
H21C0.80950.41170.73040.063*
C221.0424 (3)0.4935 (3)0.8471 (3)0.0529 (8)
H22A1.04000.57170.87500.079*
H22B1.12250.46150.79480.079*
H22C1.05250.43490.90320.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02779 (5)0.02345 (5)0.02595 (5)0.00485 (3)0.00277 (4)0.00404 (3)
S10.0212 (3)0.0358 (3)0.0304 (3)0.0072 (2)0.0021 (2)0.0031 (2)
S20.0231 (3)0.0399 (3)0.0279 (3)0.0064 (2)0.0058 (2)0.0074 (3)
S30.0417 (4)0.0317 (3)0.0279 (3)0.0191 (3)0.0099 (3)0.0051 (2)
S40.0366 (4)0.0277 (3)0.0305 (3)0.0156 (3)0.0072 (3)0.0037 (2)
P10.0224 (3)0.0250 (3)0.0244 (3)0.0050 (2)0.0013 (2)0.0044 (2)
P20.0297 (3)0.0213 (3)0.0233 (3)0.0084 (2)0.0036 (2)0.0030 (2)
O10.0457 (11)0.0417 (10)0.0306 (10)0.0245 (9)0.0069 (8)0.0114 (8)
O20.0349 (10)0.0250 (8)0.0300 (9)0.0067 (7)0.0021 (8)0.0039 (7)
O30.0326 (10)0.0268 (8)0.0324 (10)0.0093 (7)0.0048 (8)0.0016 (7)
O40.0327 (10)0.0239 (8)0.0265 (9)0.0035 (7)0.0023 (7)0.0038 (7)
C10.0196 (11)0.0246 (11)0.0244 (12)0.0028 (8)0.0013 (9)0.0046 (9)
C20.0258 (13)0.0320 (12)0.0251 (12)0.0086 (10)0.0040 (10)0.0018 (9)
C30.0290 (13)0.0303 (12)0.0322 (13)0.0139 (10)0.0052 (11)0.0027 (10)
C40.0263 (13)0.0306 (12)0.0297 (13)0.0090 (10)0.0020 (10)0.0088 (10)
C50.0316 (14)0.0305 (12)0.0249 (12)0.0093 (10)0.0043 (10)0.0027 (10)
C60.0264 (13)0.0244 (11)0.0306 (13)0.0075 (9)0.0024 (10)0.0011 (9)
C70.0547 (19)0.0535 (17)0.0378 (16)0.0360 (15)0.0109 (14)0.0127 (13)
C80.070 (2)0.0589 (19)0.0415 (17)0.0446 (17)0.0103 (16)0.0164 (14)
C90.0384 (15)0.0304 (13)0.0401 (15)0.0135 (11)0.0029 (12)0.0108 (11)
C100.062 (2)0.057 (2)0.060 (2)0.0307 (17)0.0116 (18)0.0045 (16)
C110.062 (2)0.0476 (19)0.106 (3)0.0207 (17)0.034 (2)0.035 (2)
C120.0282 (13)0.0230 (10)0.0224 (11)0.0070 (9)0.0020 (10)0.0008 (9)
C130.0328 (14)0.0227 (11)0.0307 (13)0.0074 (10)0.0035 (11)0.0042 (9)
C140.0311 (13)0.0215 (11)0.0333 (13)0.0061 (9)0.0006 (11)0.0008 (9)
C150.0281 (13)0.0278 (11)0.0254 (12)0.0104 (9)0.0037 (10)0.0013 (9)
C160.0361 (14)0.0250 (11)0.0309 (13)0.0116 (10)0.0007 (11)0.0043 (10)
C170.0336 (14)0.0220 (11)0.0298 (13)0.0058 (9)0.0009 (11)0.0017 (9)
C180.0295 (14)0.0289 (12)0.0380 (15)0.0071 (10)0.0007 (11)0.0054 (10)
C190.0309 (14)0.0423 (14)0.0382 (15)0.0132 (11)0.0042 (12)0.0093 (12)
C200.0346 (14)0.0275 (12)0.0257 (12)0.0080 (10)0.0037 (11)0.0012 (9)
C210.0446 (17)0.0352 (14)0.0438 (16)0.0140 (12)0.0062 (13)0.0100 (12)
C220.0365 (17)0.065 (2)0.0524 (19)0.0132 (15)0.0009 (15)0.0208 (16)
Geometric parameters (Å, º) top
Pb1—S22.6999 (7)C9—C101.480 (4)
Pb1—S32.7128 (6)C9—C111.502 (4)
Pb1—S12.8877 (7)C9—H91.0000
Pb1—S42.9472 (7)C10—H10A0.9800
S1—P11.9959 (9)C10—H10B0.9800
S2—P12.0115 (9)C10—H10C0.9800
S3—P22.0245 (9)C11—H11A0.9800
S4—P21.9877 (8)C11—H11B0.9800
P1—O21.5877 (17)C11—H11C0.9800
P1—C11.794 (2)C12—C131.380 (3)
P2—O41.5848 (16)C12—C171.400 (3)
P2—C121.797 (2)C13—C141.381 (3)
O1—C41.356 (3)C13—H130.9500
O1—C71.441 (3)C14—C151.386 (3)
O2—C91.476 (3)C14—H140.9500
O3—C151.363 (3)C15—C161.392 (3)
O3—C181.437 (3)C16—C171.379 (3)
O4—C201.471 (3)C16—H160.9500
C1—C21.394 (3)C17—H170.9500
C1—C61.399 (3)C18—C191.500 (4)
C2—C31.384 (3)C18—H18A0.9900
C2—H20.9500C18—H18B0.9900
C3—C41.392 (3)C19—H19A0.9800
C3—H30.9500C19—H19B0.9800
C4—C51.398 (3)C19—H19C0.9800
C5—C61.382 (3)C20—C221.503 (4)
C5—H50.9500C20—C211.507 (3)
C6—H60.9500C20—H201.0000
C7—C81.495 (4)C21—H21A0.9800
C7—H7A0.9900C21—H21B0.9800
C7—H7B0.9900C21—H21C0.9800
C8—H8A0.9800C22—H22A0.9800
C8—H8B0.9800C22—H22B0.9800
C8—H8C0.9800C22—H22C0.9800
S2—Pb1—S393.09 (2)C11—C9—H9109.0
S2—Pb1—S172.692 (19)C9—C10—H10A109.5
S3—Pb1—S191.516 (19)C9—C10—H10B109.5
S2—Pb1—S482.708 (19)H10A—C10—H10B109.5
S3—Pb1—S471.841 (18)C9—C10—H10C109.5
S1—Pb1—S4149.566 (17)H10A—C10—H10C109.5
P1—S1—Pb185.24 (3)H10B—C10—H10C109.5
P1—S2—Pb190.16 (3)C9—C11—H11A109.5
P2—S3—Pb190.51 (3)C9—C11—H11B109.5
P2—S4—Pb184.70 (3)H11A—C11—H11B109.5
O2—P1—C1100.90 (10)C9—C11—H11C109.5
O2—P1—S1110.94 (7)H11A—C11—H11C109.5
C1—P1—S1111.88 (8)H11B—C11—H11C109.5
O2—P1—S2111.34 (7)C13—C12—C17119.0 (2)
C1—P1—S2109.69 (8)C13—C12—P2118.89 (18)
S1—P1—S2111.63 (4)C17—C12—P2121.87 (17)
O4—P2—C12101.33 (10)C12—C13—C14121.2 (2)
O4—P2—S4112.17 (8)C12—C13—H13119.4
C12—P2—S4111.43 (8)C14—C13—H13119.4
O4—P2—S3109.88 (7)C13—C14—C15119.5 (2)
C12—P2—S3109.56 (9)C13—C14—H14120.2
S4—P2—S3111.98 (4)C15—C14—H14120.2
C4—O1—C7118.0 (2)O3—C15—C14123.9 (2)
C9—O2—P1119.79 (15)O3—C15—C16116.0 (2)
C15—O3—C18117.87 (18)C14—C15—C16120.1 (2)
C20—O4—P2119.72 (14)C17—C16—C15119.9 (2)
C2—C1—C6118.8 (2)C17—C16—H16120.0
C2—C1—P1119.26 (18)C15—C16—H16120.0
C6—C1—P1121.73 (18)C16—C17—C12120.2 (2)
C3—C2—C1121.4 (2)C16—C17—H17119.9
C3—C2—H2119.3C12—C17—H17119.9
C1—C2—H2119.3O3—C18—C19108.0 (2)
C2—C3—C4119.3 (2)O3—C18—H18A110.1
C2—C3—H3120.4C19—C18—H18A110.1
C4—C3—H3120.4O3—C18—H18B110.1
O1—C4—C3124.3 (2)C19—C18—H18B110.1
O1—C4—C5115.9 (2)H18A—C18—H18B108.4
C3—C4—C5119.8 (2)C18—C19—H19A109.5
C6—C5—C4120.5 (2)C18—C19—H19B109.5
C6—C5—H5119.8H19A—C19—H19B109.5
C4—C5—H5119.8C18—C19—H19C109.5
C5—C6—C1120.1 (2)H19A—C19—H19C109.5
C5—C6—H6119.9H19B—C19—H19C109.5
C1—C6—H6119.9O4—C20—C22107.2 (2)
O1—C7—C8107.2 (2)O4—C20—C21107.8 (2)
O1—C7—H7A110.3C22—C20—C21112.9 (2)
C8—C7—H7A110.3O4—C20—H20109.6
O1—C7—H7B110.3C22—C20—H20109.6
C8—C7—H7B110.3C21—C20—H20109.6
H7A—C7—H7B108.5C20—C21—H21A109.5
C7—C8—H8A109.5C20—C21—H21B109.5
C7—C8—H8B109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5C20—C21—H21C109.5
C7—C8—H8C109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5C20—C22—H22A109.5
O2—C9—C10108.7 (2)C20—C22—H22B109.5
O2—C9—C11106.4 (2)H22A—C22—H22B109.5
C10—C9—C11114.4 (3)C20—C22—H22C109.5
O2—C9—H9109.0H22A—C22—H22C109.5
C10—C9—H9109.0H22B—C22—H22C109.5
S2—Pb1—S1—P13.39 (3)C6—C1—C2—C30.0 (3)
S3—Pb1—S1—P196.16 (3)P1—C1—C2—C3175.01 (18)
S4—Pb1—S1—P140.94 (5)C1—C2—C3—C41.2 (4)
S3—Pb1—S2—P193.98 (3)C7—O1—C4—C30.1 (4)
S1—Pb1—S2—P13.36 (3)C7—O1—C4—C5179.5 (2)
S4—Pb1—S2—P1165.23 (3)C2—C3—C4—O1179.1 (2)
S2—Pb1—S3—P287.41 (3)C2—C3—C4—C51.3 (4)
S1—Pb1—S3—P2160.16 (3)O1—C4—C5—C6179.9 (2)
S4—Pb1—S3—P26.13 (3)C3—C4—C5—C60.2 (4)
S2—Pb1—S4—P2101.96 (3)C4—C5—C6—C10.9 (4)
S3—Pb1—S4—P26.27 (3)C2—C1—C6—C51.0 (3)
S1—Pb1—S4—P266.05 (4)P1—C1—C6—C5175.93 (18)
Pb1—S1—P1—O2129.49 (7)C4—O1—C7—C8179.2 (2)
Pb1—S1—P1—C1118.68 (9)P1—O2—C9—C10117.6 (2)
Pb1—S1—P1—S24.68 (3)P1—O2—C9—C11118.6 (2)
Pb1—S2—P1—O2129.58 (7)O4—P2—C12—C13160.0 (2)
Pb1—S2—P1—C1119.60 (8)S4—P2—C12—C1340.5 (2)
Pb1—S2—P1—S14.99 (4)S3—P2—C12—C1384.0 (2)
Pb1—S4—P2—O4132.71 (7)O4—P2—C12—C1725.8 (2)
Pb1—S4—P2—C12114.48 (9)S4—P2—C12—C17145.23 (19)
Pb1—S4—P2—S38.62 (4)S3—P2—C12—C1790.3 (2)
Pb1—S3—P2—O4134.69 (7)C17—C12—C13—C141.4 (4)
Pb1—S3—P2—C12114.82 (8)P2—C12—C13—C14175.8 (2)
Pb1—S3—P2—S49.33 (4)C12—C13—C14—C151.1 (4)
C1—P1—O2—C9172.27 (18)C18—O3—C15—C142.8 (3)
S1—P1—O2—C953.57 (19)C18—O3—C15—C16176.9 (2)
S2—P1—O2—C971.40 (18)C13—C14—C15—O3179.5 (2)
C12—P2—O4—C20174.11 (17)C13—C14—C15—C160.2 (4)
S4—P2—O4—C2055.17 (18)O3—C15—C16—C17179.9 (2)
S3—P2—O4—C2070.07 (17)C14—C15—C16—C170.4 (4)
O2—P1—C1—C2145.78 (18)C15—C16—C17—C120.0 (4)
S1—P1—C1—C296.21 (19)C13—C12—C17—C160.8 (4)
S2—P1—C1—C228.2 (2)P2—C12—C17—C16175.1 (2)
O2—P1—C1—C639.3 (2)C15—O3—C18—C19178.9 (2)
S1—P1—C1—C678.67 (19)P2—O4—C20—C22119.9 (2)
S2—P1—C1—C6156.88 (17)P2—O4—C20—C21118.3 (2)
Acknowledgements top

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

references
References top

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Gray, I. P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). Dalton Trans. pp. 3450–3457.

Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). Dalton Trans. pp. 2477–2486.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.

Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.