supplementary materials


gk2531 scheme

Acta Cryst. (2012). E68, m1553-m1554    [ doi:10.1107/S1600536812047757 ]

(Nitrato-[kappa]2O,O')bis(1,10-phenanthroline-[kappa]2N,N')copper(II) tricyanomethanide

K. Lacková and I. Potocnák

Abstract top

The title compound, [Cu(NO3)(C12H8N2)2][C(CN)3], is formed of discrete [Cu(NO3)(phen)2]+ complex cations (phen is 1,10-phenanthroline) and C(CN)3- counter-anions. The CuII atom has an asymmetric tetragonal-bipyramidal (4 + 1+1) stereochemistry with a pseudo-C2 symmetry axis bisecting the nitrate ligand and passing through the CuII atom between the two phen ligands. The four N atoms of the phen ligands coordinate to the CuII atom with Cu-N distances in the range 1.974 (2)-2.126 (2) Å, while the two O atoms coordinate at substantially different distances [2.154 (2) and 2.586 (2) Å]. The structure is stabilized by C-H...O hydrogen bonds and weak [pi]-[pi] interactions between nearly parallel benzene and pyridine rings of two adjacent phen molecules, with centroid-centroid distances of 3.684 (2) and 3.6111 (2) Å, and between [pi]-electrons of the tricyanomethanide anion and the pyridine or benzene rings [N...(ring centroid) distances = 3.553 (3)-3.875 (3) Å].

Comment top

The shape of coordination polyhedra (SCP) in the case of five-coordination is one of the current problems in coordination chemistry. With the aim of establishing possible reasons for different SCP in related compounds, our research group has previously prepared and studied the structures of five-coordinate copper(II) complexes of the general formula [Cu(L)2X]Y, where L is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy), X is N(CN)2- or ONC(CN)2- and Y is 1- anion (Potočňák et al., 2005, 2008). The obtained results showed that the preferred SCP for compounds with phen is close to trigonal bipyramid, whereas SCP for bpy compounds is close to tetragonal pyramid. It is known that tricyanomethanide anion (tcm, C(CN)3-) can coordinate similarly as N(CN)2- and ONC(CN)2- anions (Golub et al., 1986). Thus, to verify the findings about SCP, we have attempted to prepare compounds with X = tcm and Y = Cl- or Br- and checked their SCP. However, X-ray structure analysis of four prepared complexes has shown that their formulae are [Cu(L)2Y]tcm, thus smaller Cl- and Br- anions were coordinated while larger tcm anion remained out of coordination sphere (Lacková, 2012). Therefore, we have decided to replace smaller Cl- or Br- anions by larger NO3- anion with the hope that it remains uncoordinated. Nevertheless, the title compound, [Cu(NO3)(phen)2]tcm with coordinated NO3- and uncoordinated tcm anions has been prepared during our attempts and we present its structure here.

The title compound is formed by discrete [Cu(NO3)(phen)2]+ cation and an uncoordinated C(CN)3- anion (Figure 1). The CuII atom is coordinated by four nitrogen atoms from two phen ligands at average Cu–N distance of 2.03 (7) Å and O1 atom from the nitrato ligand at 2.154 (2) Å. The second nitrato oxygen atom (O2) is 2.586 (2) Å away from the CuII atom, thus it can be considered as semi-coordinated; similar values have been observed in the [Cu(bpy)2NO3]NO3 (2.138 (6) and 2.520 (6) Å) (Marjani et al., 2005) and [Cu(bpy)2(NO3)]NO3.HDCI.H2O, HDCI = 4,5-dicyanoimidazole (2.078 (3) and 2.639 (4) Å) (Prasad et al., 1999) compounds. Thus, the CuII atom in the title compound has an asymmetric tetragonal–bipyramidal (4+1+1) stereochemistry with pseudo-C2 symmetry axis bisecting the NO3 ligand and passing between the two phen ligands. On the other hand, the two Cu–O distances in known [Cu(NO3)(phen)2]Y complexes are much closer to each other [2.1549 (5) and 2.4886 (5) Å for Y = CCl3COO- (van Meerssche et al., 1981), 2.3119 (5) and 2.3119 (5) Å for Y = CCl3COO- (Marsh, 1997), 2.0137 (3) and 2.3316 (3) Å for Y = OH- (Chen et al., 2005) and 2.302 (6) and 2.416 (6) Å for Y = [AuBr2(CN)2]- (Ovens et al., 2010)].

Each of the two phen molecules in the title compound possesses one nitrogen atom (N20 and N40) occupying an equatorial position and one nitrogen atom (N10 and N30) coordinated in an axial position (corresponding bond lengths are reported in Table of geometric parameters), two remaining equatorial positions are occupied by O1 and O2 atoms from the nitrato ligand. Aromatic rings of phen molecules are nearly planar; the largest deviation of atoms from their mean planes is 0.060 (3) Å for C13 atom and bond distances and angles are normal (van Meerssche et al., 1981; Marsh, 1997; Chen et al., 2005; Ovens et al., 2010). The positive charge of the [Cu(NO3)(phen)2]+ cation is balanced by an uncoordinated tcm anion, which is settled under the "umbrella" of the copper atom and the two phen molecules. The NC as well as the C–C distances (Table of geometric parameters) are usual for triple NC (1.15 Å) and single C–C (1.40 Å) bonds (Golub et al., 1986). The bond angles around methanide and cyanide carbon atoms are, as expected, nearly 120 and 180° confirming sp2 and sp hybridization states of the corresponding carbon atoms (Table of geometric parameters).

The structure of the title compound is stabilized by weak C–H···O hydrogen bonds (Table 1, Figure 2) which link the cations and anions into the plane parallel with (001). The next stabilization comes from two kinds of π-π interactions (Janiak, 2000). There are face to face π-π interactions between nearly planar benzene and pyridine rings [Cg1i (N20i, C21i – C25i)···Cg3 (C11, C15, C16, C26, C25, C21) = 3.684 (2) Å; Cg2 (N40, C41 – C45)···Cg4ii (C31ii, C35ii, C36ii, C46ii, C45ii, C41ii) = 3.611 (2) Å (Cg = centroid); symmetry codes: (i) = 1 - x, -y, 1 - z; (ii) = -x, 1 - y, 1 - z] and π-π interaction between π electrons of the tcm anion and the benzene or pyridine rings [N1···Cg2 = 3.654 (4) Å; N2···Cg1 (N20, C21 – C25) = 3.875 (3) Å; N3···Cg5 (N10, C11 – C15)= 3.553 (3) Å] as shown in Figure 3.

Related literature top

For five-coordinate CuII in [Cu(L)2X]Y complexes [L = 1,10-phenanthroline (phen) and 2,2'-bipyridine (bpy); X = N(CN)2- and ONC(CN)2-, Y = 1- anions], see: Potočňák et al. (2005, 2008). For complexes containing [Cu(NO3)(phen)2]+ cations, see: van Meerssche et al. (1981); Marsh (1997); Chen et al. (2005); Ovens et al. (2010). For complexes containing [Cu(bpy)2NO3]+ cations, see: Prasad et al. (1999); Marjani et al. (2005). For ππ interactions, see: Janiak (2000). For a description of the properties of the tricyanomethanide (tcm or C(CN)3-) anion, see: Golub et al. (1986). For [Cu(L)2Y]tcm (Y = Cl- or Br-), see: Lacková (2012).

Experimental top

The title compound was prepared by chance during our attempts to prepare [Cu(phen)2(tcm)]NO3 compound with a five-coordinated CuII atom. Crystals of the title compound were prepared by mixing a 0.1 M aqueous solution of Cu(NO3)2 (5 ml, 0.5 mmol) with a 0.1 M methanol solution of 1,10-phenanthroline (10 ml, 1 mmol). To the resulting green solution, a 0.1 M aqueous solution of KC(CN)3 (5 ml, 0.5 mmol) was added (all solutions were heated almost to boiling before mixing). After 15 days, green crystals were filtered off and dried in air.

Refinement top

H-atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 50 % probability for non-H atoms. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O hydrogen bonds (dashed lines) in the title compound.
[Figure 3] Fig. 3. π-π interactions (dashed lines) between tcm, benzene and pyridine rings in the title compound (symmetry codes: (i) = 1 - x, -y, 1 - z; (ii) = -x, 1 - y, 1 - z).
(Nitrato-κ2O,O')bis(1,10-phenanthroline- κ2N,N')copper(II) tricyanomethanide top
Crystal data top
[Cu(NO3)(C12H8N2)2](C4N3)F(000) = 1172
Mr = 576.03Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4424 reflections
a = 13.3011 (4) Åθ = 2.9–29.4°
b = 10.1155 (3) ŵ = 0.90 mm1
c = 19.5597 (6) ÅT = 183 K
β = 103.997 (3)°Prism, green
V = 2553.56 (13) Å30.38 × 0.31 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5283 independent reflections
Radiation source: fine-focus sealed tube4034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3438 pixels mm-1θmax = 26.5°, θmin = 2.9°
ω scansh = 169
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived from Clark & Reid (1995)]
k = 1112
Tmin = 0.777, Tmax = 0.825l = 2224
10675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0384P)2 + 1.6904P]
where P = (Fo2 + 2Fc2)/3
5283 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(NO3)(C12H8N2)2](C4N3)V = 2553.56 (13) Å3
Mr = 576.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3011 (4) ŵ = 0.90 mm1
b = 10.1155 (3) ÅT = 183 K
c = 19.5597 (6) Å0.38 × 0.31 × 0.26 mm
β = 103.997 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
5283 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived from Clark & Reid (1995)]
4034 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.825Rint = 0.024
10675 measured reflectionsθmax = 26.5°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.40 e Å3
S = 1.01Δρmin = 0.43 e Å3
5283 reflectionsAbsolute structure: ?
361 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23397 (2)0.23042 (3)0.492800 (16)0.02860 (11)
N100.20297 (15)0.0829 (2)0.42426 (10)0.0279 (5)
N200.37950 (15)0.2104 (2)0.47543 (10)0.0254 (4)
N300.27128 (15)0.3747 (2)0.56231 (10)0.0269 (5)
N400.12822 (15)0.3762 (2)0.43990 (10)0.0273 (5)
O10.12472 (15)0.1517 (2)0.54749 (10)0.0456 (5)
O20.27099 (14)0.0638 (2)0.59615 (12)0.0480 (5)
O30.13425 (17)0.0080 (2)0.62999 (11)0.0535 (6)
N40.17688 (15)0.07347 (19)0.59182 (11)0.0251 (5)
C110.28763 (18)0.0376 (2)0.40462 (12)0.0247 (5)
C120.1122 (2)0.0234 (3)0.39845 (13)0.0326 (6)
H120.05380.05420.41170.039*
C130.1022 (2)0.0837 (3)0.35220 (14)0.0358 (6)
H130.03760.12160.33400.043*
C140.1878 (2)0.1322 (3)0.33397 (13)0.0341 (6)
H140.18200.20530.30450.041*
C150.2850 (2)0.0715 (2)0.35975 (12)0.0280 (6)
C160.3793 (2)0.1106 (3)0.34200 (13)0.0316 (6)
H160.37890.18410.31340.038*
C210.38273 (18)0.1067 (2)0.43158 (12)0.0236 (5)
C220.46619 (19)0.2782 (3)0.49966 (13)0.0302 (6)
H220.46480.34950.52940.036*
C230.5594 (2)0.2471 (3)0.48255 (13)0.0320 (6)
H230.61860.29710.50070.038*
C240.5630 (2)0.1427 (3)0.43896 (13)0.0319 (6)
H240.62480.12090.42730.038*
C250.47279 (19)0.0682 (2)0.41169 (12)0.0251 (5)
C260.4683 (2)0.0431 (3)0.36593 (13)0.0311 (6)
H260.52770.06940.35250.037*
C310.21763 (18)0.4890 (2)0.54394 (12)0.0240 (5)
C320.3421 (2)0.3704 (3)0.62327 (13)0.0327 (6)
H320.37800.29190.63650.039*
C330.3646 (2)0.4792 (3)0.66803 (14)0.0350 (6)
H330.41530.47350.71010.042*
C340.3117 (2)0.5938 (3)0.64957 (13)0.0327 (6)
H340.32650.66730.67890.039*
C350.23491 (19)0.6016 (2)0.58662 (13)0.0267 (5)
C360.1738 (2)0.7169 (3)0.56400 (14)0.0322 (6)
H360.18470.79240.59200.039*
C410.14034 (18)0.4896 (2)0.47829 (13)0.0252 (5)
C420.0572 (2)0.3760 (3)0.37912 (13)0.0348 (6)
H420.04840.29980.35170.042*
C430.0048 (2)0.4860 (3)0.35470 (14)0.0378 (7)
H430.05380.48210.31180.045*
C440.0065 (2)0.5983 (3)0.39360 (14)0.0351 (6)
H440.03520.67130.37780.042*
C450.08147 (18)0.6040 (3)0.45786 (13)0.0282 (6)
C460.1005 (2)0.7181 (3)0.50269 (15)0.0340 (6)
H460.06150.79430.48930.041*
C10.3205 (3)0.4583 (3)0.34844 (17)0.0488 (8)
C20.4051 (2)0.3074 (3)0.28228 (14)0.0384 (7)
C30.2207 (2)0.2859 (3)0.27295 (14)0.0408 (7)
C40.3157 (2)0.3509 (3)0.30173 (14)0.0381 (7)
N10.3254 (3)0.5442 (3)0.38713 (17)0.0772 (10)
N20.4774 (2)0.2697 (3)0.26576 (13)0.0481 (7)
N30.1445 (2)0.2311 (3)0.25020 (14)0.0594 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02404 (17)0.02999 (18)0.02883 (17)0.00306 (14)0.00066 (12)0.00604 (14)
N100.0248 (11)0.0302 (12)0.0268 (11)0.0005 (9)0.0026 (9)0.0015 (9)
N200.0246 (10)0.0265 (11)0.0233 (10)0.0003 (9)0.0026 (9)0.0008 (9)
N300.0253 (11)0.0267 (11)0.0268 (11)0.0050 (9)0.0027 (9)0.0008 (9)
N400.0210 (10)0.0315 (12)0.0270 (11)0.0020 (9)0.0007 (9)0.0003 (9)
O10.0396 (11)0.0472 (12)0.0433 (11)0.0154 (10)0.0029 (9)0.0071 (10)
O20.0230 (10)0.0497 (13)0.0711 (14)0.0028 (9)0.0111 (10)0.0105 (11)
O30.0639 (15)0.0471 (13)0.0574 (14)0.0118 (11)0.0298 (12)0.0044 (11)
N40.0220 (11)0.0207 (11)0.0337 (11)0.0005 (9)0.0092 (9)0.0091 (9)
C110.0266 (13)0.0253 (13)0.0203 (12)0.0015 (11)0.0019 (10)0.0032 (10)
C120.0279 (13)0.0373 (15)0.0305 (14)0.0031 (12)0.0032 (11)0.0003 (12)
C130.0337 (15)0.0374 (16)0.0332 (14)0.0103 (13)0.0018 (12)0.0005 (12)
C140.0465 (17)0.0266 (14)0.0267 (13)0.0054 (12)0.0038 (12)0.0056 (11)
C150.0355 (14)0.0257 (13)0.0210 (12)0.0002 (11)0.0030 (11)0.0025 (10)
C160.0454 (16)0.0263 (13)0.0233 (12)0.0063 (12)0.0090 (12)0.0021 (11)
C210.0279 (13)0.0232 (12)0.0181 (11)0.0019 (10)0.0024 (10)0.0055 (10)
C220.0309 (14)0.0302 (14)0.0281 (13)0.0042 (12)0.0044 (11)0.0029 (11)
C230.0262 (13)0.0402 (16)0.0284 (13)0.0071 (12)0.0040 (11)0.0023 (12)
C240.0263 (13)0.0414 (16)0.0286 (13)0.0031 (12)0.0080 (11)0.0068 (12)
C250.0295 (13)0.0248 (13)0.0206 (11)0.0047 (11)0.0051 (10)0.0056 (10)
C260.0343 (14)0.0351 (15)0.0258 (13)0.0088 (12)0.0108 (11)0.0052 (11)
C310.0200 (12)0.0276 (13)0.0256 (12)0.0012 (10)0.0077 (10)0.0016 (10)
C320.0324 (14)0.0326 (15)0.0285 (13)0.0049 (12)0.0017 (11)0.0014 (11)
C330.0356 (15)0.0374 (16)0.0274 (13)0.0011 (12)0.0014 (12)0.0038 (12)
C340.0370 (15)0.0298 (14)0.0301 (13)0.0030 (12)0.0057 (12)0.0075 (11)
C350.0246 (13)0.0276 (13)0.0298 (13)0.0013 (11)0.0102 (11)0.0004 (11)
C360.0343 (14)0.0248 (13)0.0397 (15)0.0014 (11)0.0131 (12)0.0024 (12)
C410.0199 (12)0.0292 (13)0.0277 (13)0.0010 (10)0.0080 (10)0.0030 (11)
C420.0300 (14)0.0417 (16)0.0296 (14)0.0020 (12)0.0013 (11)0.0009 (12)
C430.0268 (14)0.0500 (18)0.0313 (14)0.0018 (13)0.0032 (12)0.0086 (13)
C440.0264 (14)0.0384 (16)0.0389 (15)0.0052 (12)0.0046 (12)0.0114 (13)
C450.0213 (12)0.0323 (14)0.0327 (13)0.0039 (11)0.0097 (11)0.0064 (11)
C460.0306 (14)0.0277 (14)0.0458 (16)0.0088 (12)0.0132 (13)0.0065 (13)
C10.055 (2)0.0455 (19)0.0450 (17)0.0154 (16)0.0094 (15)0.0067 (16)
C20.0484 (18)0.0380 (17)0.0226 (13)0.0190 (15)0.0033 (13)0.0032 (12)
C30.0483 (18)0.0447 (17)0.0283 (14)0.0067 (15)0.0072 (13)0.0054 (13)
C40.0443 (17)0.0364 (16)0.0299 (14)0.0098 (13)0.0015 (13)0.0003 (12)
N10.086 (2)0.062 (2)0.085 (2)0.0259 (18)0.025 (2)0.0363 (19)
N20.0455 (16)0.0587 (17)0.0381 (14)0.0186 (14)0.0064 (12)0.0048 (13)
N30.0510 (17)0.075 (2)0.0492 (16)0.0219 (15)0.0059 (14)0.0160 (15)
Geometric parameters (Å, º) top
Cu1—N101.981 (2)C23—H230.9300
Cu1—N202.055 (2)C24—C251.409 (3)
Cu1—N301.974 (2)C24—H240.9300
Cu1—N402.126 (2)C25—C261.431 (3)
Cu1—O12.154 (2)C26—H260.9300
Cu1—O22.586 (2)C31—C351.398 (3)
O1—N41.253 (3)C31—C411.438 (3)
O2—N41.238 (3)C32—C331.393 (4)
O3—N41.234 (3)C32—H320.9300
N10—C111.354 (3)C33—C341.359 (4)
N10—C121.334 (3)C33—H330.9300
N20—C211.362 (3)C34—C351.399 (3)
N20—C221.326 (3)C34—H340.9300
N30—C311.361 (3)C35—C361.429 (3)
N30—C321.330 (3)C36—C461.351 (4)
N40—C411.359 (3)C36—H360.9300
N40—C421.327 (3)C41—C451.401 (3)
C11—C151.405 (3)C42—C431.400 (4)
C11—C211.430 (3)C42—H420.9300
C12—C131.397 (4)C43—C441.355 (4)
C12—H120.9300C43—H430.9300
C13—C141.364 (4)C44—C451.404 (3)
C13—H130.9300C44—H440.9300
C14—C151.410 (4)C45—C461.434 (4)
C14—H140.9300C46—H460.9300
C15—C161.435 (4)C1—N11.144 (4)
C16—C261.349 (4)C1—C41.411 (4)
C16—H160.9300C2—N21.151 (4)
C21—C251.401 (3)C2—C41.404 (4)
C22—C231.396 (4)C3—N31.147 (4)
C22—H220.9300C3—C41.415 (4)
C23—C241.366 (4)
N10—Cu1—N30177.46 (8)C23—C22—H22118.5
N10—Cu1—N40100.85 (8)C24—C23—C22119.4 (2)
N20—Cu1—N1082.20 (8)C24—C23—H23120.3
N20—Cu1—N3095.54 (8)C22—C23—H23120.3
N20—Cu1—N40121.78 (8)C23—C24—C25119.7 (2)
N30—Cu1—N4081.31 (8)C23—C24—H24120.2
N10—Cu1—O190.15 (8)C25—C24—H24120.2
N20—Cu1—O1145.22 (8)C21—C25—C24117.0 (2)
N30—Cu1—O191.07 (8)C21—C25—C26118.9 (2)
N40—Cu1—O192.97 (8)C24—C25—C26124.1 (2)
N10—Cu1—O290.41 (8)C16—C26—C25121.1 (2)
N20—Cu1—O293.23 (7)C16—C26—H26119.5
N30—Cu1—O288.55 (7)C25—C26—H26119.5
N40—Cu1—O2144.19 (7)N30—C31—C35122.3 (2)
O1—Cu1—O252.76 (6)N30—C31—C41117.1 (2)
C12—N10—C11118.6 (2)C35—C31—C41120.6 (2)
C12—N10—Cu1128.10 (18)N30—C32—C33122.4 (2)
C11—N10—Cu1113.29 (15)N30—C32—H32118.8
C22—N20—C21117.7 (2)C33—C32—H32118.8
C22—N20—Cu1131.50 (18)C34—C33—C32119.2 (2)
C21—N20—Cu1110.75 (16)C34—C33—H33120.4
C32—N30—C31118.5 (2)C32—C33—H33120.4
C32—N30—Cu1126.82 (17)C33—C34—C35120.2 (2)
C31—N30—Cu1114.70 (15)C33—C34—H34119.9
C42—N40—C41117.4 (2)C35—C34—H34119.9
C42—N40—Cu1132.69 (18)C31—C35—C34117.3 (2)
C41—N40—Cu1109.91 (15)C31—C35—C36118.8 (2)
N4—O1—Cu1104.48 (15)C34—C35—C36123.9 (2)
N4—O2—Cu184.07 (15)C46—C36—C35121.1 (2)
O3—N4—O2121.4 (2)C46—C36—H36119.5
O3—N4—O1120.0 (2)C35—C36—H36119.5
O2—N4—O1118.6 (2)N40—C41—C45123.8 (2)
N10—C11—C15123.1 (2)N40—C41—C31117.0 (2)
N10—C11—C21116.9 (2)C45—C41—C31119.2 (2)
C15—C11—C21120.0 (2)N40—C42—C43122.5 (3)
N10—C12—C13122.1 (3)N40—C42—H42118.8
N10—C12—H12119.0C43—C42—H42118.8
C13—C12—H12119.0C44—C43—C42119.9 (2)
C14—C13—C12119.6 (2)C44—C43—H43120.0
C14—C13—H13120.2C42—C43—H43120.0
C12—C13—H13120.2C43—C44—C45119.7 (2)
C13—C14—C15120.1 (2)C43—C44—H44120.1
C13—C14—H14120.0C45—C44—H44120.1
C15—C14—H14120.0C41—C45—C44116.6 (2)
C11—C15—C14116.6 (2)C41—C45—C46119.1 (2)
C11—C15—C16118.5 (2)C44—C45—C46124.2 (2)
C14—C15—C16124.9 (2)C36—C46—C45121.2 (2)
C26—C16—C15121.4 (2)C36—C46—H46119.4
C26—C16—H16119.3C45—C46—H46119.4
C15—C16—H16119.3N1—C1—C4178.9 (4)
N20—C21—C25123.2 (2)N2—C2—C4178.7 (3)
N20—C21—C11116.7 (2)N3—C3—C4178.8 (4)
C25—C21—C11120.1 (2)C1—C4—C2120.6 (3)
N20—C22—C23123.0 (2)C2—C4—C3118.7 (3)
N20—C22—H22118.5C3—C4—C1120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.523.206 (3)131
C24—H24···O2ii0.932.443.231 (3)144
C36—H36···O3iii0.932.453.307 (3)153
C46—H46···O1iv0.932.473.201 (3)136
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.523.206 (3)131
C24—H24···O2ii0.932.443.231 (3)144
C36—H36···O3iii0.932.453.307 (3)153
C46—H46···O1iv0.932.473.201 (3)136
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1.
Acknowledgements top

This work was supported by the Slovak Research and Development Agency under contract No. APVV–0132–11 and by the internal P.J. Šafárik University grant system VVGS-PF-2012–24 and VVGS 1/12–13.

references
References top

Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Chen, Z.-M., Li, W., Yang, Y.-Q., Kuang, D.-Z., Feng, Y.-L., Wang, J.-Q. & Zhang, F.-X. (2005). Hunan Shifan Daxue Ziran Kexue Xuebao, 28, 54–58.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Golub, A. M., Kőhler, H. & Skopensko, V. V. (1986). In Chemistry of Pseudohalides. Amsterdam: Elsevier.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.

Lacková, K. (2012). Unpublished results.

Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14.

Marsh, R. E. (1997). Acta Cryst. B53, 317–322.

Meerssche, M. van, Germain, G., Declercq, J. P. & Wilputte-Steinert, L. (1981). Cryst. Struct. Commun. 10, 47–53.

Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z.-G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609–9616.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Potočňák, I., Burčák, M., Baran, P. & Jäger, L. (2005). Transition Met. Chem. 30, 889–896.

Potočňák, I., Vavra, M., Jäger, L., Baran, P. & Wagner, C. (2008). Transition Met. Chem. 33, 1–8.

Prasad, B. L. V., Sato, H., Enoki, T., Cohen, S. & Radhakrishnan, T. P. (1999). J. Chem. Soc. Dalton Trans. pp. 25–29.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.