organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(5-Bromo-1H-indol-3-yl)-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione di­methyl sulfoxide monosolvate

aHacettepe University, Faculty of Pharmacy, Dept. of Pharmaceutical Chemistry, 06100 Sihhiye-Ankara, Turkey, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 31 October 2012; accepted 6 November 2012; online 10 November 2012)

In the title compound, C21H19BrN2O2·C2H6OS, the indole ring system is essentially planar, with a maximum deviation of 0.050 (3) Å for the non-bridgehead C atom adjacent to the N atom. The two cyclo­hex-2-enone rings adopt half-chair conformations. An intra­molecular C—H⋯O hydrogen bond occurs. The solvent mol­ecule exhibits minor disorder of the S atom [site occupancies = 0.8153 (16) and 0.1847 (18)]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For biological properties of acridines, including anti­bacterial, anti-parasitic, and anti­tumor activity, see: Biwersi et al. (1994[Biwersi, J., Tulk, B. & Verkman, A. S. (1994). Anal. Biochem. 219, 139-43.]); Wainwright (2001[Wainwright, M. J. (2001). J. Antimicrob. Chemother. 47, 1-13.]); Guetzoyan et al. (2007[Guetzoyan, L., Ramiandrasoa, F., Dorizon, H., Desprez, C., Bridoux, A., Rogier, C., Pradines, B. & Perree-Fauvet, M. (2007). Bioorg. Med. Chem. 15, 3278-3289.]); Denny (2002[Denny, W. (2002). Curr. Med. Chem. 9, 1655-1665.]); Luan et al. (2011[Luan, X., Gao, C., Zhang, N., Chen, Y., Sun, Q., Tan, C., Liu, H., Jin, Y. & Jiang, Y. (2011). Bioorg. Med. Chem. 19, 3312-3319.]). For recent studies showing that some acridine analogs having aryl and heteroaryl substituents at the ten position on the ring exert potassium-channel-modulating activiy, see: Şimşek et al. (2004[Şimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939-943.]), Berkan et al. (2002[Berkan, Ö., Saraç, B., Şimşek, R., Yildirim, Ş., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519-523.]). For a description of the Cambridge Structural Database, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19BrN2O2·C2H6OS

  • Mr = 489.42

  • Monoclinic, P 21 /c

  • a = 9.1544 (4) Å

  • b = 18.9619 (8) Å

  • c = 12.9790 (5) Å

  • β = 105.623 (4)°

  • V = 2169.72 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.71 mm−1

  • T = 123 K

  • 0.51 × 0.23 × 0.12 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.272, Tmax = 0.721

  • 14006 measured reflections

  • 4444 independent reflections

  • 4183 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 1.06

  • 4444 reflections

  • 290 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.96 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1 0.95 2.50 3.252 (3) 136
N1—H1A⋯O2i 0.88 2.03 2.901 (3) 173
N2—H2C⋯O100ii 0.88 2.10 2.920 (3) 154
N2—H2C⋯O100iii 0.88 2.52 3.038 (3) 118
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acridines display abroad range of biological properties including antibacterial, anti-parasitic, and antitumor activities (Biwersi et al., 1994; Wainwright, 2001;Guetzoyan et al., 2007; Denny, 2002; Luan et al., 2011). Furthermore, the indole moiety also has a wide range of biological activities which may enhance the acridine ring properties. Recent studies show that some acridine analogs having aryl and heteroaryl substituents on their ten position on the ring exert potassium channel modulating activities (Şimşek et al., 2004; Berkan et al., 2002).

The title acridine compound contains (Fig. 1), 5-bromo-3-methyl-1H-indole connected to the 3,4,6,7,9,10-hexahydro-2H,5H-acridine-1,8-dione system and the disordered dimethyl sulfoxide solvent molecule. The Br—C bond distance [1.910 (3) Å] is in the normal range (Allen, 2002). The 1-H indole ring system is essentially planar with a maximum deviation of -0.050 (3) Å for atom C21. The 1H-indol ring system forms a dihedral angle of 22.40 (12) ° with the 1,4-dihydro-pyridine ring (N1/C1/C6—C8/C13). The two cyclohex-2-enone rings (C1—C6 and C8—C13) adopt half chair conformations with C3 atom 0.345 (3) Å and C11 atom 0.335 (3) Å out of the mean-plane formed by the remaining ring atoms. The solvent molecule exhibits minor disorder of its S atom [site occupancies = 0.8153 (16) and 0.1847 (18)]. In the crystal, molecules are linked by C—H···O and N—H···O hydrogen bonds (Tab. 1 & Fig. 2).

Related literature top

For biological properties of acridines, including antibacterial, anti-parasitic, and antitumor activity, see: Biwersi et al. (1994); Wainwright (2001); Guetzoyan et al. (2007); Denny (2002); Luan et al. (2011). For recent studies showing that some acridine analogs having aryl and heteroaryl substituents at the ten position on the ring exert potassium-channel-modulating activiy, see: Şimşek et al. (2004), Berkan et al. (2002). For a description of the Cambridge Structural Database, see: Allen, (2002).

Experimental top

A mixture of 5-bromoindole-3-carbaldehyde (1.0 mmol), 1,3-cyclohexanedione (2.0 mmol), ammonium acetate (5.0 mmol) was dissolved in 5 ml of methanol and refluxed until the reaction was completed (monitored by TLC). The forming precipitate was filtered off and crystallized from ethanol. Crystals were grown by slow evaporation of an dimethyl sulfoxide/methanol mixed solution.

Refinement top

All disordered components were subjected to rigid bond and similarity restraints and all major and minor disordered components were refined anisotropically. Hydrogen atoms were positioned geometrically [C—H = 0.95–1.00 Å; N—H = 0.88 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl). A rotating-group model was applied for methyl groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability ellipsoids for non-H atoms. Only major disordered component for the solvent molecule is shown.
[Figure 2] Fig. 2. The packing of (I), viewed down a axis, showing molecules are linked into plane parallel to bc plane. Only major disordered component for the solvent molecule is shown and hydrogen bonds are shown as dashed lines.
9-(5-Bromo-1H-indol-3-yl)-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione dimethyl sulfoxide monosolvate top
Crystal data top
C21H19BrN2O2·C2H6OSF(000) = 1008
Mr = 489.42Dx = 1.498 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7435 reflections
a = 9.1544 (4) Åθ = 3.5–75.5°
b = 18.9619 (8) ŵ = 3.71 mm1
c = 12.9790 (5) ÅT = 123 K
β = 105.623 (4)°Prism, light-yellow
V = 2169.72 (16) Å30.51 × 0.23 × 0.12 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4444 independent reflections
Radiation source: Enhance (Cu) X-ray Source4183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.2°
ω scansh = 1011
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 2023
Tmin = 0.272, Tmax = 0.721l = 1516
14006 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0699P)2 + 3.3586P]
where P = (Fo2 + 2Fc2)/3
4444 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 1.96 e Å3
6 restraintsΔρmin = 1.35 e Å3
Crystal data top
C21H19BrN2O2·C2H6OSV = 2169.72 (16) Å3
Mr = 489.42Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.1544 (4) ŵ = 3.71 mm1
b = 18.9619 (8) ÅT = 123 K
c = 12.9790 (5) Å0.51 × 0.23 × 0.12 mm
β = 105.623 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4444 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
4183 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.721Rint = 0.041
14006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 1.96 e Å3
4444 reflectionsΔρmin = 1.35 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10A0.13796 (9)0.48345 (4)0.17928 (7)0.03482 (18)0.8153 (16)
O1000.0432 (3)0.51319 (16)0.1107 (2)0.0382 (7)0.8153 (16)
C1000.0885 (11)0.5268 (4)0.3027 (4)0.0648 (14)0.8153 (16)
H10C0.01190.51100.34430.097*0.8153 (16)
H10D0.16340.51600.34190.097*0.8153 (16)
H10E0.08630.57780.29100.097*0.8153 (16)
C2000.3247 (4)0.5167 (3)0.1308 (6)0.0412 (9)0.8153 (16)
H20A0.37290.49550.06110.062*0.8153 (16)
H20B0.32100.56800.12310.062*0.8153 (16)
H20C0.38350.50500.18140.062*0.8153 (16)
S10B0.1368 (4)0.54694 (19)0.1798 (3)0.03482 (18)0.1847 (16)
O1010.0449 (18)0.4988 (9)0.1276 (13)0.0382 (7)0.1847 (16)
C1010.096 (5)0.517 (2)0.3127 (12)0.0648 (14)0.1847 (16)
H10F0.00710.49810.33440.097*0.1847 (16)
H10G0.16850.48030.31830.097*0.1847 (16)
H10H0.10430.55670.35960.097*0.1847 (16)
C2010.3306 (14)0.5260 (18)0.132 (3)0.0412 (9)0.1847 (16)
H20D0.37100.54580.06040.062*0.1847 (16)
H20E0.38580.54580.18050.062*0.1847 (16)
H20F0.34300.47460.12910.062*0.1847 (16)
Br10.25418 (3)0.905937 (19)0.00832 (2)0.04525 (11)
O10.2313 (2)0.77721 (11)0.33651 (15)0.0352 (4)
O20.7181 (2)0.65871 (10)0.37707 (14)0.0340 (4)
N10.6163 (2)0.78876 (11)0.65949 (16)0.0260 (4)
H1A0.65140.80730.72350.031*
N20.7825 (2)0.92633 (11)0.39600 (17)0.0269 (4)
H2C0.86140.95460.41570.032*
C10.4715 (3)0.80553 (12)0.59876 (19)0.0243 (5)
C20.3651 (3)0.83425 (14)0.6587 (2)0.0296 (5)
H2A0.41910.86910.71230.036*
H2B0.33010.79540.69720.036*
C30.2284 (3)0.86936 (15)0.5820 (2)0.0365 (6)
H3A0.15160.88070.62050.044*
H3B0.26040.91400.55510.044*
C40.1589 (3)0.82086 (16)0.4883 (2)0.0364 (6)
H4A0.11520.77910.51490.044*
H4B0.07530.84600.43720.044*
C50.2730 (3)0.79654 (13)0.4305 (2)0.0275 (5)
C60.4318 (3)0.79381 (12)0.49155 (19)0.0239 (5)
C70.5513 (2)0.77218 (12)0.43652 (18)0.0225 (4)
H7A0.50260.74230.37300.027*
C80.6706 (3)0.72888 (12)0.51402 (18)0.0235 (5)
C90.7466 (3)0.67249 (13)0.4734 (2)0.0265 (5)
C100.8583 (3)0.62845 (14)0.5553 (2)0.0305 (5)
H10A0.93000.60520.52100.037*
H10B0.80320.59120.58300.037*
C110.9464 (3)0.67432 (14)0.6478 (2)0.0303 (5)
H11A1.00560.71010.62070.036*
H11B1.01830.64460.70080.036*
C120.8380 (3)0.71116 (13)0.70158 (19)0.0270 (5)
H12A0.80020.67660.74550.032*
H12B0.89340.74860.74980.032*
C130.7059 (3)0.74323 (12)0.62042 (19)0.0241 (5)
C140.6227 (3)0.83598 (12)0.39910 (18)0.0230 (4)
C150.5613 (3)0.87732 (12)0.30416 (18)0.0235 (4)
C160.4347 (3)0.86999 (13)0.21609 (19)0.0261 (5)
H16A0.36420.83270.21220.031*
C170.4162 (3)0.91920 (14)0.1349 (2)0.0296 (5)
C180.5129 (3)0.97717 (14)0.1398 (2)0.0300 (5)
H18A0.49111.01140.08430.036*
C190.6399 (3)0.98455 (13)0.2253 (2)0.0276 (5)
H19A0.70781.02290.22910.033*
C200.6650 (3)0.93375 (13)0.30590 (19)0.0253 (5)
C210.7575 (3)0.86762 (13)0.45088 (19)0.0253 (5)
H21A0.82420.85120.51570.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10A0.0375 (4)0.0344 (4)0.0344 (4)0.0084 (3)0.0128 (3)0.0046 (3)
O1000.0318 (9)0.0508 (17)0.0359 (14)0.0114 (11)0.0159 (9)0.0126 (11)
C1000.058 (2)0.093 (4)0.0423 (19)0.008 (2)0.0118 (19)0.023 (2)
C2000.0305 (13)0.045 (2)0.0518 (17)0.0033 (13)0.0173 (13)0.0110 (16)
S10B0.0375 (4)0.0344 (4)0.0344 (4)0.0084 (3)0.0128 (3)0.0046 (3)
O1010.0318 (9)0.0508 (17)0.0359 (14)0.0114 (11)0.0159 (9)0.0126 (11)
C1010.058 (2)0.093 (4)0.0423 (19)0.008 (2)0.0118 (19)0.023 (2)
C2010.0305 (13)0.045 (2)0.0518 (17)0.0033 (13)0.0173 (13)0.0110 (16)
Br10.03879 (18)0.0606 (2)0.02995 (16)0.00943 (13)0.00175 (13)0.01575 (12)
O10.0266 (8)0.0499 (11)0.0276 (9)0.0020 (8)0.0049 (7)0.0038 (8)
O20.0406 (10)0.0372 (10)0.0242 (8)0.0118 (8)0.0085 (7)0.0004 (7)
N10.0283 (9)0.0290 (10)0.0209 (9)0.0015 (8)0.0071 (8)0.0011 (7)
N20.0255 (9)0.0284 (10)0.0278 (10)0.0025 (8)0.0089 (8)0.0006 (8)
C10.0260 (10)0.0227 (10)0.0262 (11)0.0004 (8)0.0102 (9)0.0033 (8)
C20.0329 (12)0.0307 (12)0.0293 (12)0.0062 (10)0.0153 (10)0.0024 (9)
C30.0352 (13)0.0416 (14)0.0368 (13)0.0128 (11)0.0170 (11)0.0044 (11)
C40.0254 (11)0.0499 (15)0.0364 (14)0.0071 (11)0.0126 (10)0.0076 (12)
C50.0260 (11)0.0303 (12)0.0273 (11)0.0022 (9)0.0090 (9)0.0074 (9)
C60.0233 (10)0.0252 (11)0.0250 (11)0.0019 (8)0.0096 (9)0.0042 (8)
C70.0220 (10)0.0248 (10)0.0209 (10)0.0014 (8)0.0062 (8)0.0009 (8)
C80.0214 (10)0.0255 (11)0.0239 (11)0.0001 (8)0.0065 (8)0.0028 (9)
C90.0257 (11)0.0279 (11)0.0266 (11)0.0018 (9)0.0082 (9)0.0018 (9)
C100.0297 (11)0.0318 (12)0.0298 (12)0.0095 (10)0.0077 (10)0.0017 (10)
C110.0241 (11)0.0369 (13)0.0291 (12)0.0049 (10)0.0059 (9)0.0056 (10)
C120.0267 (11)0.0321 (12)0.0213 (10)0.0016 (9)0.0048 (9)0.0042 (9)
C130.0245 (10)0.0243 (10)0.0246 (11)0.0000 (9)0.0083 (9)0.0039 (8)
C140.0242 (10)0.0252 (11)0.0210 (10)0.0034 (8)0.0086 (8)0.0006 (8)
C150.0259 (10)0.0239 (10)0.0233 (10)0.0037 (9)0.0115 (9)0.0014 (8)
C160.0268 (11)0.0272 (11)0.0246 (11)0.0003 (9)0.0077 (9)0.0028 (9)
C170.0256 (11)0.0388 (13)0.0224 (11)0.0013 (10)0.0032 (9)0.0050 (10)
C180.0348 (12)0.0311 (12)0.0267 (11)0.0038 (10)0.0129 (10)0.0065 (9)
C190.0314 (11)0.0251 (11)0.0305 (12)0.0002 (9)0.0154 (10)0.0025 (9)
C200.0259 (10)0.0254 (11)0.0272 (11)0.0015 (9)0.0113 (9)0.0022 (9)
C210.0248 (10)0.0288 (11)0.0235 (10)0.0022 (9)0.0086 (9)0.0000 (9)
Geometric parameters (Å, º) top
S10A—O1001.510 (3)C3—H3B0.9900
S10A—C1001.748 (6)C4—C51.512 (4)
S10A—C2001.771 (4)C4—H4A0.9900
C100—H10C0.9800C4—H4B0.9900
C100—H10D0.9800C5—C61.457 (3)
C100—H10E0.9800C6—C71.515 (3)
C200—H20A0.9800C7—C81.512 (3)
C200—H20B0.9800C7—C141.515 (3)
C200—H20C0.9800C7—H7A1.0000
S10B—O1011.519 (11)C8—C131.358 (3)
S10B—C1011.757 (11)C8—C91.450 (3)
S10B—C2011.760 (10)C9—C101.513 (3)
C101—H10F0.9800C10—C111.525 (4)
C101—H10G0.9800C10—H10A0.9900
C101—H10H0.9800C10—H10B0.9900
C201—H20D0.9800C11—C121.527 (3)
C201—H20E0.9800C11—H11A0.9900
C201—H20F0.9800C11—H11B0.9900
Br1—C171.910 (3)C12—C131.502 (3)
O1—C51.232 (3)C12—H12A0.9900
O2—C91.235 (3)C12—H12B0.9900
N1—C131.378 (3)C14—C211.374 (3)
N1—C11.385 (3)C14—C151.441 (3)
N1—H1A0.8800C15—C161.398 (3)
N2—C201.366 (3)C15—C201.426 (3)
N2—C211.374 (3)C16—C171.383 (3)
N2—H2C0.8800C16—H16A0.9500
C1—C61.358 (3)C17—C181.402 (4)
C1—C21.503 (3)C18—C191.382 (4)
C2—C31.526 (4)C18—H18A0.9500
C2—H2A0.9900C19—C201.394 (3)
C2—H2B0.9900C19—H19A0.9500
C3—C41.520 (4)C21—H21A0.9500
C3—H3A0.9900
O100—S10A—C100108.4 (3)C8—C7—H7A108.8
O100—S10A—C200108.1 (3)C6—C7—H7A108.8
C100—S10A—C20098.3 (4)C14—C7—H7A108.8
O101—S10B—C101104.4 (16)C13—C8—C9120.7 (2)
O101—S10B—C201109.5 (14)C13—C8—C7119.9 (2)
C101—S10B—C201101 (2)C9—C8—C7119.3 (2)
S10B—C101—H10F109.5O2—C9—C8122.2 (2)
S10B—C101—H10G109.5O2—C9—C10120.9 (2)
H10F—C101—H10G109.5C8—C9—C10116.8 (2)
S10B—C101—H10H109.5C9—C10—C11110.6 (2)
H10F—C101—H10H109.5C9—C10—H10A109.5
H10G—C101—H10H109.5C11—C10—H10A109.5
S10B—C201—H20D109.5C9—C10—H10B109.5
S10B—C201—H20E109.5C11—C10—H10B109.5
H20D—C201—H20E109.5H10A—C10—H10B108.1
S10B—C201—H20F109.5C10—C11—C12110.5 (2)
H20D—C201—H20F109.5C10—C11—H11A109.6
H20E—C201—H20F109.5C12—C11—H11A109.6
C13—N1—C1120.5 (2)C10—C11—H11B109.6
C13—N1—H1A119.7C12—C11—H11B109.6
C1—N1—H1A119.7H11A—C11—H11B108.1
C20—N2—C21108.9 (2)C13—C12—C11111.3 (2)
C20—N2—H2C125.5C13—C12—H12A109.4
C21—N2—H2C125.5C11—C12—H12A109.4
C6—C1—N1119.7 (2)C13—C12—H12B109.4
C6—C1—C2123.9 (2)C11—C12—H12B109.4
N1—C1—C2116.3 (2)H12A—C12—H12B108.0
C1—C2—C3110.6 (2)C8—C13—N1119.8 (2)
C1—C2—H2A109.5C8—C13—C12123.9 (2)
C3—C2—H2A109.5N1—C13—C12116.2 (2)
C1—C2—H2B109.5C21—C14—C15105.8 (2)
C3—C2—H2B109.5C21—C14—C7126.8 (2)
H2A—C2—H2B108.1C15—C14—C7127.3 (2)
C4—C3—C2110.5 (2)C16—C15—C20119.3 (2)
C4—C3—H3A109.5C16—C15—C14133.7 (2)
C2—C3—H3A109.5C20—C15—C14106.9 (2)
C4—C3—H3B109.5C17—C16—C15117.4 (2)
C2—C3—H3B109.5C17—C16—H16A121.3
H3A—C3—H3B108.1C15—C16—H16A121.3
C5—C4—C3112.7 (2)C16—C17—C18123.2 (2)
C5—C4—H4A109.1C16—C17—Br1118.29 (19)
C3—C4—H4A109.1C18—C17—Br1118.48 (19)
C5—C4—H4B109.1C19—C18—C17120.0 (2)
C3—C4—H4B109.1C19—C18—H18A120.0
H4A—C4—H4B107.8C17—C18—H18A120.0
O1—C5—C6121.7 (2)C18—C19—C20117.8 (2)
O1—C5—C4120.7 (2)C18—C19—H19A121.1
C6—C5—C4117.5 (2)C20—C19—H19A121.1
C1—C6—C5120.2 (2)N2—C20—C19130.2 (2)
C1—C6—C7120.0 (2)N2—C20—C15107.7 (2)
C5—C6—C7119.7 (2)C19—C20—C15122.1 (2)
C8—C7—C6108.48 (19)N2—C21—C14110.7 (2)
C8—C7—C14110.51 (19)N2—C21—H21A124.6
C6—C7—C14111.30 (19)C14—C21—H21A124.6
C13—N1—C1—C618.3 (3)C7—C8—C13—N110.9 (3)
C13—N1—C1—C2159.9 (2)C9—C8—C13—C129.5 (4)
C6—C1—C2—C317.9 (3)C7—C8—C13—C12170.2 (2)
N1—C1—C2—C3164.0 (2)C1—N1—C13—C817.0 (3)
C1—C2—C3—C449.7 (3)C1—N1—C13—C12161.9 (2)
C2—C3—C4—C554.8 (3)C11—C12—C13—C812.8 (3)
C3—C4—C5—O1156.3 (2)C11—C12—C13—N1168.3 (2)
C3—C4—C5—C626.5 (3)C8—C7—C14—C2122.8 (3)
N1—C1—C6—C5166.7 (2)C6—C7—C14—C2197.8 (3)
C2—C1—C6—C511.4 (4)C8—C7—C14—C15159.4 (2)
N1—C1—C6—C78.5 (3)C6—C7—C14—C1580.0 (3)
C2—C1—C6—C7173.4 (2)C21—C14—C15—C16174.8 (3)
O1—C5—C6—C1170.3 (2)C7—C14—C15—C167.1 (4)
C4—C5—C6—C16.9 (3)C21—C14—C15—C201.1 (3)
O1—C5—C6—C74.9 (4)C7—C14—C15—C20177.1 (2)
C4—C5—C6—C7177.9 (2)C20—C15—C16—C170.7 (3)
C1—C6—C7—C832.0 (3)C14—C15—C16—C17176.1 (2)
C5—C6—C7—C8143.2 (2)C15—C16—C17—C183.5 (4)
C1—C6—C7—C1489.8 (3)C15—C16—C17—Br1174.75 (18)
C5—C6—C7—C1495.0 (2)C16—C17—C18—C194.6 (4)
C6—C7—C8—C1333.3 (3)Br1—C17—C18—C19173.56 (19)
C14—C7—C8—C1389.0 (3)C17—C18—C19—C201.4 (4)
C6—C7—C8—C9147.0 (2)C21—N2—C20—C19179.6 (2)
C14—C7—C8—C990.7 (3)C21—N2—C20—C150.1 (3)
C13—C8—C9—O2179.2 (2)C18—C19—C20—N2177.0 (2)
C7—C8—C9—O20.5 (4)C18—C19—C20—C152.7 (4)
C13—C8—C9—C103.6 (3)C16—C15—C20—N2176.0 (2)
C7—C8—C9—C10176.7 (2)C14—C15—C20—N20.6 (3)
O2—C9—C10—C11145.2 (2)C16—C15—C20—C193.8 (3)
C8—C9—C10—C1137.5 (3)C14—C15—C20—C19179.6 (2)
C9—C10—C11—C1258.8 (3)C20—N2—C21—C140.9 (3)
C10—C11—C12—C1346.2 (3)C15—C14—C21—N21.2 (3)
C9—C8—C13—N1169.4 (2)C7—C14—C21—N2177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O11.002.492.869 (3)102
C16—H16A···O10.952.503.252 (3)136
N1—H1A···O2i0.882.032.901 (3)173
N2—H2C···O100ii0.882.102.920 (3)154
N2—H2C···O100iii0.882.523.038 (3)118
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H19BrN2O2·C2H6OS
Mr489.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.1544 (4), 18.9619 (8), 12.9790 (5)
β (°) 105.623 (4)
V3)2169.72 (16)
Z4
Radiation typeCu Kα
µ (mm1)3.71
Crystal size (mm)0.51 × 0.23 × 0.12
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011), using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.272, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
14006, 4444, 4183
Rint0.041
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.06
No. of reflections4444
No. of parameters290
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.96, 1.35

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O10.952.503.252 (3)136.1
N1—H1A···O2i0.882.032.901 (3)173.3
N2—H2C···O100ii0.882.102.920 (3)153.8
N2—H2C···O100iii0.882.523.038 (3)118.3
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+3/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerkan, Ö., Saraç, B., Şimşek, R., Yildirim, Ş., Sarioglu, Y. & Şafak, C. (2002). Eur. J. Med. Chem. 37, 519–523.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBiwersi, J., Tulk, B. & Verkman, A. S. (1994). Anal. Biochem. 219, 139-43.  CrossRef CAS PubMed Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDenny, W. (2002). Curr. Med. Chem. 9, 1655–1665.  CrossRef PubMed CAS Google Scholar
First citationGuetzoyan, L., Ramiandrasoa, F., Dorizon, H., Desprez, C., Bridoux, A., Rogier, C., Pradines, B. & Perree-Fauvet, M. (2007). Bioorg. Med. Chem. 15, 3278–3289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuan, X., Gao, C., Zhang, N., Chen, Y., Sun, Q., Tan, C., Liu, H., Jin, Y. & Jiang, Y. (2011). Bioorg. Med. Chem. 19, 3312–3319.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŞimşek, R., Özkan, M., Kısmetli, E., Uma, S. & Şafak, C. (2004). Il Farmaco, 59, 939–943.  PubMed Google Scholar
First citationWainwright, M. J. (2001). J. Antimicrob. Chemother. 47, 1–13.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds