[Journal logo]

Volume 68 
Part 12 
Page o3313  
December 2012  

Received 4 November 2012
Accepted 5 November 2012
Online 10 November 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.031
wR = 0.090
Data-to-parameter ratio = 15.1
Details
Open access

1-Benzoyl-3-(4-chlorophenyl)thiourea dichloromethane hemisolvate

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title hemisolvate, C14H11ClN2OS·0.5CH2Cl2, an anti disposition is found for the thione and ketone atoms, as well as the N-H H atoms; the dichloromethane C atom lies on a twofold axis. The central chromophore (including the two adjacent ipso C atoms) is planar (r.m.s. deviation = 0.021 Å) owing to the presence of an intramolecular N-H...O hydrogen bond, which closes an S(6) loop. Significant twists are evident in the molecule, the dihedral angles between the central moiety and the phenyl and benzene rings being 29.52 (7) and 40.02 (7)°, respectively. In the crystal, eight-membered {...HNC= S}2 synthons with twofold symmetry form via N-H...S hydrogen bonds. The dimers are connected into a supramolecular chain along [111] by C-H...O interactions. The chains stack along the c axis, forming columns which define channels in which the occluded dichloromethane molecules reside.

Related literature

For complexation of N-benzoyl-N'-arylthiourea derivatives to transition metals, see: Selvakumaran et al. (2011[Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.]). For related structures, see: Khawar Rauf et al. (2006[Khawar Rauf, M., Badshah, A., Flörke, U. & Saeed, A. (2006). Acta Cryst. E62, o1419-o1420.]); Selvakumaran et al. (2012[Selvakumaran, N., Sheeba, M. M., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o3259.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2OS·0.5CH2Cl2

  • Mr = 333.23

  • Monoclinic, C 2/c

  • a = 20.0800 (4) Å

  • b = 16.0136 (2) Å

  • c = 10.3752 (2) Å

  • [beta] = 117.690 (3)°

  • V = 2954.10 (9) Å3

  • Z = 8

  • Cu K[alpha] radiation

  • [mu] = 5.26 mm-1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.619, Tmax = 1.000

  • 5766 measured reflections

  • 2937 independent reflections

  • 2802 reflections with I > 2[sigma](I)

  • Rint = 0.013

Refinement
  • R[F2 > 2[sigma](F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.05

  • 2937 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.32 e Å-3

  • [Delta][rho]min = -0.63 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N2-H2n...O1 0.90 (2) 1.85 (2) 2.6034 (17) 140.6 (18)
N1-H1n...S1i 0.87 (2) 2.59 (2) 3.4368 (15) 167 (2)
C12-H12...O1ii 0.95 2.47 3.3743 (19) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5268 ).


Acknowledgements

NS thanks NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.  [CrossRef] [PubMed] [ChemPort]
Khawar Rauf, M., Badshah, A., Flörke, U. & Saeed, A. (2006). Acta Cryst. E62, o1419-o1420.  [CSD] [CrossRef] [details]
Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.  [ISI] [CSD] [CrossRef] [ChemPort]
Selvakumaran, N., Sheeba, M. M., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o3259.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, o3313  [ doi:10.1107/S1600536812045588 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.