supplementary materials


hy2601 scheme

Acta Cryst. (2012). E68, m1471    [ doi:10.1107/S1600536812045928 ]

Di-[mu]-bromido-bis[bromido(4,7-diphenyl-1,10-phenanthroline-[kappa]2N,N')cadmium]

S. A. Shirvan, S. Haydari Dezfuli, F. Khazali, M. Aghajeri and A. Borsalani

Abstract top

The title compound, [Cd2Br4(C24H16N2)2], consists of a centrosymmetric dimeric unit in which two Br atoms bridge two CdII atoms, forming a four-membered ring. A terminal Br atom and a bidentate chelating 4,7-diphenyl-1,10-phenanthroline ligand complete a square-pyramidal geometry for the CdII atom. In the crystal, C-H...Br hydrogen bonds and [pi]-[pi] contacts between the pyridine and phenyl rings [centroid-centroid distances = 3.704 (4) and 3.715 (4) Å] lead to a three-dimensional supramolecular structure.

Comment top

4,7-Diphenyl-1,10-phenanthroline (Ph2phen) is a good bidentate ligand, and numerous complexes with Ph2phen have been prepared, such as that of mercury (Alizadeh et al., 2010; Yousefi et al., 2008), gold (Ahmadi et al., 2008), indium (Abedi et al., 2012), copper (Chesnut et al., 2001) and platinum (Gaballa et al., 2003). Here, we report the synthesis and structure of the title compound.

The structure of the title compound (Fig. 1) consists of a centrosymmetric dimeric unit, [Cd2Br4(Ph2phen)2], in which two Br atoms bridge two CdII atoms, forming a four-membered ring; a terminal Br atom and a bidentate chelating Ph2phen complete a five coordination (Table 1). In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and ππ contacts (Fig. 2) between the pyridine and phenyl rings, Cg3···Cg4i and Cg6···Cg6i [symmetry code: (i) 1-x, 2-y, -z, Cg3, Cg4 and Cg6 are the centroids of the rings N1/C1–C3/C10/C24, N2/C13–C14/C21–C23 and C10–C13/C23–C24, respectively], with centroid–centroid distances of 3.704 (4) and 3.715 (4) Å, stabilize the structure.

Related literature top

For related structures, see: Abedi et al. (2012); Ahmadi et al. (2008); Alizadeh et al. (2010); Chesnut et al. (2001); Gaballa et al. (2003); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of Ph2phen (0.44 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after one week (yield: 0.62 g, 77.1%).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
Di-µ-bromido-bis[bromido(4,7-diphenyl-1,10-phenanthroline- κ2N,N')cadmium] top
Crystal data top
[Cd2Br4(C24H16N2)2]F(000) = 1168
Mr = 1209.20Dx = 1.875 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12072 reflections
a = 10.1704 (4) Åθ = 2.4–26.0°
b = 12.4702 (5) ŵ = 4.76 mm1
c = 17.3444 (7) ÅT = 120 K
β = 103.187 (3)°Prism, colorless
V = 2141.73 (15) Å30.25 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4200 independent reflections
Radiation source: fine-focus sealed tube3248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 129
Tmin = 0.385, Tmax = 0.502k = 1515
12072 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
4200 reflections(Δ/σ)max = 0.005
262 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Cd2Br4(C24H16N2)2]V = 2141.73 (15) Å3
Mr = 1209.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.1704 (4) ŵ = 4.76 mm1
b = 12.4702 (5) ÅT = 120 K
c = 17.3444 (7) Å0.25 × 0.18 × 0.15 mm
β = 103.187 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4200 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3248 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.502Rint = 0.090
12072 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.129Δρmax = 1.15 e Å3
S = 1.05Δρmin = 1.05 e Å3
4200 reflectionsAbsolute structure: ?
262 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3033 (7)0.7552 (6)0.0038 (4)0.0220 (15)
H10.21430.73270.01370.026*
C20.4054 (7)0.6893 (6)0.0089 (4)0.0212 (15)
H20.38420.62330.03360.025*
C30.5378 (7)0.7205 (5)0.0147 (4)0.0198 (14)
C40.6478 (8)0.6468 (5)0.0047 (5)0.0230 (15)
C50.6445 (9)0.6043 (6)0.0702 (5)0.0342 (19)
H50.57700.62500.11340.041*
C60.7429 (9)0.5306 (7)0.0800 (6)0.044 (2)
H60.74350.50480.13020.052*
C70.8396 (9)0.4960 (6)0.0150 (6)0.039 (2)
H70.90390.44570.02120.047*
C80.8401 (8)0.5363 (7)0.0590 (6)0.0329 (18)
H80.90370.51170.10280.040*
C90.7462 (8)0.6139 (6)0.0690 (5)0.0281 (17)
H90.75000.64320.11870.034*
C100.5663 (7)0.8236 (5)0.0511 (4)0.0171 (14)
C110.6978 (8)0.8691 (6)0.0725 (4)0.0206 (15)
H110.77000.83170.06080.025*
C120.7213 (7)0.9657 (6)0.1095 (4)0.0187 (14)
H120.80790.99470.12060.022*
C130.6142 (7)1.0227 (5)0.1312 (4)0.0163 (13)
C140.6353 (8)1.1181 (6)0.1777 (4)0.0226 (15)
C150.7704 (7)1.1668 (5)0.2081 (4)0.0195 (14)
C160.8805 (9)1.1070 (6)0.2449 (4)0.0303 (18)
H160.87081.03380.25230.036*
C171.0068 (8)1.1553 (7)0.2711 (5)0.0318 (19)
H171.08121.11400.29480.038*
C181.0212 (9)1.2650 (7)0.2618 (5)0.037 (2)
H181.10521.29750.27890.045*
C190.9106 (9)1.3248 (7)0.2272 (4)0.0301 (18)
H190.92031.39820.22040.036*
C200.7865 (7)1.2787 (6)0.2025 (4)0.0229 (15)
H200.71181.32140.18170.027*
C210.5205 (8)1.1675 (6)0.1945 (5)0.0261 (16)
H210.52981.22920.22540.031*
C220.3948 (7)1.1245 (6)0.1654 (4)0.0236 (16)
H220.32131.16010.17700.028*
C230.4797 (7)0.9847 (5)0.1065 (4)0.0159 (13)
C240.4563 (7)0.8838 (5)0.0639 (4)0.0172 (14)
N10.3274 (6)0.8502 (5)0.0403 (3)0.0190 (12)
N20.3701 (6)1.0356 (5)0.1218 (3)0.0197 (12)
Cd10.15894 (5)0.95338 (4)0.07604 (3)0.01781 (15)
Br10.10996 (9)0.87751 (7)0.20336 (5)0.0309 (2)
Br20.03037 (7)1.14002 (5)0.04404 (4)0.02161 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (4)0.023 (4)0.026 (4)0.002 (3)0.011 (3)0.000 (3)
C20.019 (3)0.024 (4)0.024 (3)0.001 (3)0.012 (3)0.008 (3)
C30.025 (4)0.016 (3)0.018 (3)0.000 (3)0.005 (3)0.003 (3)
C40.024 (4)0.015 (3)0.032 (4)0.004 (3)0.011 (3)0.004 (3)
C50.040 (5)0.024 (4)0.038 (5)0.004 (4)0.010 (4)0.012 (4)
C60.038 (5)0.033 (5)0.062 (6)0.001 (4)0.017 (4)0.022 (4)
C70.031 (4)0.018 (4)0.079 (7)0.002 (3)0.037 (5)0.012 (4)
C80.016 (3)0.031 (4)0.055 (5)0.001 (3)0.017 (3)0.008 (4)
C90.026 (4)0.025 (4)0.040 (4)0.002 (3)0.023 (4)0.002 (3)
C100.019 (3)0.016 (3)0.016 (3)0.002 (3)0.004 (3)0.001 (3)
C110.027 (4)0.022 (3)0.015 (3)0.002 (3)0.010 (3)0.003 (3)
C120.018 (3)0.021 (3)0.016 (3)0.005 (3)0.003 (3)0.001 (3)
C130.017 (3)0.021 (3)0.015 (3)0.002 (3)0.012 (3)0.004 (3)
C140.027 (4)0.017 (3)0.022 (3)0.002 (3)0.001 (3)0.002 (3)
C150.026 (4)0.017 (3)0.017 (3)0.001 (3)0.007 (3)0.004 (3)
C160.044 (5)0.026 (4)0.018 (4)0.002 (4)0.002 (3)0.005 (3)
C170.024 (4)0.047 (5)0.023 (4)0.006 (4)0.002 (3)0.016 (4)
C180.034 (5)0.046 (5)0.034 (4)0.016 (4)0.014 (4)0.024 (4)
C190.038 (5)0.032 (4)0.023 (4)0.010 (4)0.011 (3)0.008 (3)
C200.023 (4)0.025 (4)0.022 (3)0.002 (3)0.008 (3)0.006 (3)
C210.024 (4)0.021 (4)0.033 (4)0.006 (3)0.006 (3)0.008 (3)
C220.020 (4)0.026 (4)0.031 (4)0.006 (3)0.020 (3)0.001 (3)
C230.020 (3)0.016 (3)0.013 (3)0.001 (3)0.007 (3)0.002 (2)
C240.023 (4)0.014 (3)0.013 (3)0.001 (3)0.002 (3)0.001 (3)
N10.018 (3)0.022 (3)0.019 (3)0.002 (2)0.007 (2)0.001 (2)
N20.019 (3)0.023 (3)0.023 (3)0.005 (3)0.016 (2)0.003 (3)
Cd10.0164 (3)0.0199 (3)0.0193 (2)0.0026 (2)0.00858 (18)0.0045 (2)
Br10.0369 (4)0.0325 (4)0.0291 (4)0.0053 (3)0.0195 (3)0.0146 (3)
Br20.0191 (3)0.0189 (3)0.0267 (4)0.0035 (3)0.0050 (3)0.0001 (3)
Geometric parameters (Å, º) top
C1—N11.339 (9)C14—C211.409 (11)
C1—C21.381 (10)C14—C151.484 (10)
C1—H10.9300C15—C161.375 (11)
C2—C31.372 (10)C15—C201.411 (10)
C2—H20.9300C16—C171.398 (12)
C3—C101.432 (9)C16—H160.9300
C3—C41.489 (10)C17—C181.389 (13)
C4—C91.379 (11)C17—H170.9300
C4—C51.396 (11)C18—C191.369 (13)
C5—C61.398 (12)C18—H180.9300
C5—H50.9300C19—C201.365 (11)
C6—C71.385 (14)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.377 (13)C21—C221.371 (11)
C7—H70.9300C21—H210.9300
C8—C91.398 (11)C22—N21.333 (9)
C8—H80.9300C22—H220.9300
C9—H90.9300C23—N21.361 (9)
C10—C241.406 (10)C23—C241.452 (9)
C10—C111.423 (10)C24—N11.349 (9)
C11—C121.361 (9)Cd1—N12.336 (6)
C11—H110.9300Cd1—N22.349 (6)
C12—C131.421 (10)Cd1—Br12.5537 (9)
C12—H120.9300Cd1—Br22.6653 (8)
C13—C231.418 (9)Cd1—Br2i2.7518 (9)
C13—C141.426 (9)
N1—C1—C2122.6 (7)C15—C16—C17120.5 (8)
N1—C1—H1118.7C15—C16—H16119.8
C2—C1—H1118.7C17—C16—H16119.8
C3—C2—C1120.4 (7)C18—C17—C16120.1 (8)
C3—C2—H2119.8C18—C17—H17120.0
C1—C2—H2119.8C16—C17—H17120.0
C2—C3—C10118.2 (7)C19—C18—C17119.3 (8)
C2—C3—C4120.2 (6)C19—C18—H18120.4
C10—C3—C4121.6 (6)C17—C18—H18120.4
C9—C4—C5119.9 (7)C20—C19—C18121.1 (8)
C9—C4—C3121.0 (7)C20—C19—H19119.4
C5—C4—C3118.9 (7)C18—C19—H19119.4
C4—C5—C6119.8 (8)C19—C20—C15120.6 (7)
C4—C5—H5120.1C19—C20—H20119.7
C6—C5—H5120.1C15—C20—H20119.7
C7—C6—C5120.0 (9)C22—C21—C14120.0 (7)
C7—C6—H6120.0C22—C21—H21120.0
C5—C6—H6120.0C14—C21—H21120.0
C8—C7—C6119.8 (8)N2—C22—C21125.0 (7)
C8—C7—H7120.1N2—C22—H22117.5
C6—C7—H7120.1C21—C22—H22117.5
C7—C8—C9120.7 (8)N2—C23—C13124.2 (6)
C7—C8—H8119.7N2—C23—C24117.2 (6)
C9—C8—H8119.7C13—C23—C24118.6 (6)
C4—C9—C8119.7 (8)N1—C24—C10122.7 (6)
C4—C9—H9120.1N1—C24—C23117.3 (6)
C8—C9—H9120.1C10—C24—C23120.0 (6)
C24—C10—C11118.7 (6)C1—N1—C24118.6 (6)
C24—C10—C3117.4 (6)C1—N1—Cd1123.1 (5)
C11—C10—C3123.8 (7)C24—N1—Cd1118.0 (4)
C12—C11—C10122.0 (7)C22—N2—C23116.2 (6)
C12—C11—H11119.0C22—N2—Cd1126.5 (5)
C10—C11—H11119.0C23—N2—Cd1117.2 (4)
C11—C12—C13120.4 (6)N1—Cd1—N270.2 (2)
C11—C12—H12119.8N1—Cd1—Br1108.95 (14)
C13—C12—H12119.8N2—Cd1—Br1102.32 (14)
C23—C13—C12119.8 (6)N1—Cd1—Br2141.29 (14)
C23—C13—C14117.4 (6)N2—Cd1—Br293.23 (14)
C12—C13—C14122.8 (6)Br1—Cd1—Br2108.68 (3)
C21—C14—C13117.2 (7)N1—Cd1—Br2i89.71 (14)
C21—C14—C15119.5 (6)N2—Cd1—Br2i150.28 (14)
C13—C14—C15123.3 (7)Br1—Cd1—Br2i104.89 (3)
C16—C15—C20118.3 (7)Br2—Cd1—Br2i89.24 (3)
C16—C15—C14122.2 (7)Cd1—Br2—Cd1i90.76 (3)
C20—C15—C14119.5 (7)
N1—C1—C2—C31.2 (11)C14—C13—C23—N22.6 (10)
C1—C2—C3—C101.3 (10)C12—C13—C23—C244.2 (9)
C1—C2—C3—C4176.8 (7)C14—C13—C23—C24175.7 (6)
C2—C3—C4—C9120.8 (8)C11—C10—C24—N1175.1 (6)
C10—C3—C4—C957.2 (10)C3—C10—C24—N12.9 (10)
C2—C3—C4—C554.2 (10)C11—C10—C24—C237.1 (9)
C10—C3—C4—C5127.8 (8)C3—C10—C24—C23174.8 (6)
C9—C4—C5—C61.6 (12)N2—C23—C24—N12.3 (9)
C3—C4—C5—C6176.7 (7)C13—C23—C24—N1179.2 (6)
C4—C5—C6—C73.1 (13)N2—C23—C24—C10175.6 (6)
C5—C6—C7—C81.5 (13)C13—C23—C24—C102.9 (9)
C6—C7—C8—C91.6 (12)C2—C1—N1—C241.6 (10)
C5—C4—C9—C81.5 (11)C2—C1—N1—Cd1172.4 (5)
C3—C4—C9—C8173.5 (7)C10—C24—N1—C10.6 (10)
C7—C8—C9—C43.1 (11)C23—C24—N1—C1177.3 (6)
C2—C3—C10—C243.2 (9)C10—C24—N1—Cd1174.8 (5)
C4—C3—C10—C24174.8 (6)C23—C24—N1—Cd13.0 (8)
C2—C3—C10—C11174.7 (7)C21—C22—N2—C230.7 (10)
C4—C3—C10—C117.2 (10)C21—C22—N2—Cd1176.5 (6)
C24—C10—C11—C124.4 (10)C13—C23—N2—C222.6 (9)
C3—C10—C11—C12177.7 (6)C24—C23—N2—C22175.7 (6)
C10—C11—C12—C132.7 (10)C13—C23—N2—Cd1178.8 (5)
C11—C12—C13—C237.1 (9)C24—C23—N2—Cd10.5 (7)
C11—C12—C13—C14172.8 (6)C1—N1—Cd1—N2176.0 (6)
C23—C13—C14—C210.7 (9)C24—N1—Cd1—N22.0 (5)
C12—C13—C14—C21179.4 (7)C1—N1—Cd1—Br179.3 (5)
C23—C13—C14—C15179.6 (6)C24—N1—Cd1—Br194.7 (5)
C12—C13—C14—C150.3 (10)C1—N1—Cd1—Br2114.7 (5)
C21—C14—C15—C16133.3 (8)C24—N1—Cd1—Br271.2 (5)
C13—C14—C15—C1647.1 (11)C1—N1—Cd1—Br2i26.3 (5)
C21—C14—C15—C2044.0 (10)C24—N1—Cd1—Br2i159.7 (5)
C13—C14—C15—C20135.7 (7)C22—N2—Cd1—N1176.5 (6)
C20—C15—C16—C174.2 (11)C23—N2—Cd1—N10.7 (4)
C14—C15—C16—C17178.5 (7)C22—N2—Cd1—Br170.6 (6)
C15—C16—C17—C181.5 (12)C23—N2—Cd1—Br1105.2 (4)
C16—C17—C18—C190.3 (12)C22—N2—Cd1—Br239.3 (6)
C17—C18—C19—C200.6 (12)C23—N2—Cd1—Br2144.9 (4)
C18—C19—C20—C153.4 (11)C22—N2—Cd1—Br2i133.5 (5)
C16—C15—C20—C195.2 (11)C23—N2—Cd1—Br2i50.7 (6)
C14—C15—C20—C19177.5 (7)N1—Cd1—Br2—Cd1i88.6 (2)
C13—C14—C21—C221.0 (11)N2—Cd1—Br2—Cd1i150.36 (14)
C15—C14—C21—C22178.7 (7)Br1—Cd1—Br2—Cd1i105.47 (3)
C14—C21—C22—N21.1 (12)Br2i—Cd1—Br2—Cd1i0.0
C12—C13—C23—N2177.5 (6)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br2i0.932.903.554 (7)129
C21—H21···Br1ii0.932.793.582 (8)144
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cd1—N12.336 (6)Cd1—Br22.6653 (8)
Cd1—N22.349 (6)Cd1—Br2i2.7518 (9)
Cd1—Br12.5537 (9)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br2i0.932.903.554 (7)129
C21—H21···Br1ii0.932.793.582 (8)144
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Abedi, A., Amani, V. & Safari, N. (2012). Main Group Chem. 11, 223–233.

Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157.

Alizadeh, R., Amani, V., Farshady, A. A. & Khavasi, H. R. (2010). J. Coord. Chem. 63, 2122–2131.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chesnut, D. J., Kusnetzow, A., Birge, R. & Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581–2586.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gaballa, A., Wagner, C., Schmidt, H. & Steinborn, D. (2003). Z. Anorg. Allg. Chem. 629, 703–710.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yousefi, M., Vahid, R. R., Amani, V., Chamjangali, M. A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.