[Journal logo]

Volume 68 
Part 12 
Page m1531  
December 2012  

Received 8 November 2012
Accepted 16 November 2012
Online 24 November 2012

Key indicators
Single-crystal X-ray study
T = 180 K
Mean [sigma](C-C) = 0.006 Å
R = 0.026
wR = 0.056
Data-to-parameter ratio = 15.5
Details
Open access

Tris(thiocyanato-[kappa]N)tris(triphenylphosphine oxide-[kappa]O)terbium(III)

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688, USA
Correspondence e-mail: rsykora@southalabama.edu

The title compound, [Tb(NCS)3(C18H15OP)3], contains a six-coordinate TbII cation surrounded by three O-bound triphenylphosphine oxide ligands and three N-bound thiocyanate ligands, each in a fac arrangement. There are two crystallographically unique TbIII atoms in the asymmetric unit. One TbIII atom resides on a threefold rotation axis, while the other has no imposed crystallographic symmetry. The thiocyanate ligands are bound through N atoms, illustrating the hard-hard bonding principles of metal complex chemistry.

Related literature

For information on structures of related lanthanide phosphine oxide complexes, see: Bowden et al. (2012[Bowden, A., Singh, K. & Platt, A. (2012). Polyhedron, 42, 30-35.]); Feazell et al. (2004[Feazell, R. P., Gary, J. B., Kautz, J. A., Klausmeyer, K. K., Wong, C. W. & Zancanella, M. (2004). Acta Cryst. E60, m532-m534.]). For the synthesis and characterization of lanthanide triphenylphosphine oxides with nitrate and thiocyanate anions, see: Cousins & Hart (1967[Cousins, D. R. & Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745-1757.], 1968[Cousins, D. R. & Hart, F. A. (1968). J. Inorg. Nucl. Chem. 30, 3009-3015.]). For more information on the sizes of lanthanide ions, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(NCS)3(C18H15OP)3]

  • Mr = 1168.01

  • Trigonal, R 3

  • a = 38.6774 (5) Å

  • c = 12.3956 (2) Å

  • V = 16058.8 (4) Å3

  • Z = 12

  • Mo K[alpha] radiation

  • [mu] = 1.57 mm-1

  • T = 180 K

  • 0.17 × 0.12 × 0.05 mm

Data collection
  • Agilent Xcalibur Eos CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.913, Tmax = 1.000

  • 79947 measured reflections

  • 13045 independent reflections

  • 11605 reflections with I > 2[sigma](I)

  • Rint = 0.034

Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.056

  • S = 1.06

  • 13045 reflections

  • 841 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.46 e Å-3

  • [Delta][rho]min = -0.51 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6522 Friedel pairs

  • Flack parameter: -0.028 (4)

Table 1
Selected bond lengths (Å)

Tb1-O1 2.265 (3)
Tb1-O2 2.246 (3)
Tb1-O3 2.243 (3)
Tb1-N1 2.350 (4)
Tb1-N2 2.359 (4)
Tb1-N3 2.356 (4)
Tb2-N4 2.355 (4)
Tb2-O4 2.267 (3)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2605 ).


Acknowledgements

The authors acknowledge the National Science Foundation for its generous support (NSF Career grant to RES, No. CHE-0846680).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Bowden, A., Singh, K. & Platt, A. (2012). Polyhedron, 42, 30-35.  [ISI] [CSD] [CrossRef] [ChemPort]
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.  [CrossRef] [ISI] [details]
Cousins, D. R. & Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745-1757.  [CrossRef] [ChemPort] [ISI]
Cousins, D. R. & Hart, F. A. (1968). J. Inorg. Nucl. Chem. 30, 3009-3015.  [CrossRef] [ChemPort] [ISI]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Feazell, R. P., Gary, J. B., Kautz, J. A., Klausmeyer, K. K., Wong, C. W. & Zancanella, M. (2004). Acta Cryst. E60, m532-m534.  [CSD] [CrossRef] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, m1531  [ doi:10.1107/S1600536812047289 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.