organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(3,5-Di­chloro­anilino)meth­yl]-N-(3,5-di­chloro­phen­yl)-6-methyl-2-phenyl­pyrimidin-4-amine

aDepartment of Organic Chemistry, Wrocław Medical University, 9 Grodzka St, 50-137 Wrocław, Poland, bDepartment of Applied Pharmacy, Wrocław Medical Uniwersity, 38 Szewska St, 50-137 Wrocław, Poland, cDepartment of Bioorganic Chemistry, Faculty of Engineering and Economics, Wrocław University of Economics, 118/120 Komandorska St, 53-345 Wrocław, Poland, and dFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
*Correspondence e-mail: isai@o2.pl

(Received 7 November 2012; accepted 12 November 2012; online 24 November 2012)

In the title compound, C24H18Cl4N4, the pyrimidine ring makes dihedral angles of 19.1 (2), 4.1 (2) and 67.5 (2)°, respectively, with phenyl and two benzene rings, and the mol­ecular conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond closing a six-membered ring with an S(6) motif. In the crystal, a pair of inter­molecular N—H⋯N hydrogen bonds connect two mol­ecules, forming inversion dimers with R22(12) motifs. C—H⋯π inter­actions links the dimers into a chain running along the a-axis direction. There are also ππ stacking inter­actions [centroid–centroid distance = 3.666 (4) Å] between the benzene rings of adjacent chains.

Related literature

For the anti­bacterial activity of 6-methyl-2-phenyl-5-substituted pyrimidine derivatives, see: Cieplik et al. (2003[Cieplik, J., Pluta, J. & Gubrynowicz, O. (2003). Boll. Chim. Farm. 142, 146-150.], 2008[Cieplik, J., Raginia, M., Pluta, J., Gubrynowicz, O., Bryndal, I. & Lis, T. (2008). Acta Pol. Pharm. Drug Res. 65, 427-434.]). For related structures, see: Cieplik et al. (2006[Cieplik, J., Pluta, J., Bryndal, I. & Lis, T. (2006). Acta Cryst. C62, o259-o261.], 2012[Cieplik, J., Stolarczyk, M., Bryndal, I. & Lis, T. (2012). Acta Cryst. E68, o1729-o1730.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18Cl4N4

  • Mr = 504.22

  • Triclinic, [P \overline 1]

  • a = 8.267 (3) Å

  • b = 11.271 (4) Å

  • c = 12.788 (4) Å

  • α = 76.53 (5)°

  • β = 78.95 (5)°

  • γ = 81.42 (5)°

  • V = 1130.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 85 K

  • 0.23 × 0.14 × 0.08 mm

Data collection
  • Oxford Xcalibur PX with Onyx CCD diffractometer

  • 19215 measured reflections

  • 8041 independent reflections

  • 5082 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.100

  • S = 1.03

  • 8041 reflections

  • 296 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N5 0.85 (2) 2.19 (2) 2.875 (3) 137.6 (17)
N5—H5⋯N1i 0.81 (2) 2.40 (2) 3.171 (3) 158.1 (19)
C57—H572⋯Cg1ii 0.99 2.65 3.62 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In this work, we extend the earlier analysis of 6-methyl-2-phenyl-5-substituted pyrimidine derivatives (Cieplik et al., 2003, 2008, 2012) and report the crystal strucure of this class of derivatives, namely 5-[(3,5-dichloroanilino)methyl]-N-(3,5-dichlorophenyl)-6-methyl-2-phenylpyrimidin-4-amine.

The title compound crystallizes in P1 space group, with one molecule in the asymmetric unit (Fig. 1). There is an intramolecular N—H···N hydrogen bond between N4—H4 and N5 (Table 1), which closes six-memebered ring. This S(6) motif was observed in earlier described similar compounds (Cieplik et al., 2006). The conformation of the title molecule is best defined by dihedral angles formed between the pyrimidine ring plane and the planes of the phenyl ring attached to the atom C2 and two other aryl rings of the (3,5-dichlorophenyl)amino or the (3,5-dichlorophenyl)aminomethyl groups attached, respectively, to the atoms C4 or C5 of the pyrimidine ring. These dihedral angles are 19.1 (2), 4.1 (2) and 67.5 (2)°, respectively.

The molecules are linked by a combination of N—H···N, C—H···π (Table 1) and also aromatic ππ stacking interactions. The N5 amine atom acts as hydrogen-bond donor to the pyrimidine atom N1 of adjacent molecule at (-x + 1, -y + 1, -z + 1). This result in the formation of a dimer via a cyclic R22(12) ring motif. Additionally, the C57—H572 groups acts as a donor of C—H···π(arene) interaction to the benzene C21—C26 ring (-x, -y + 1, -z + 1). The combination of N—H···N and C—H···π interactions generates a chain running along the [100] direction (Fig. 2). Between C41—C46 rings of molecules of adjacent chains related by translation along a direction, there is also an aromatic ππ stacking interaction. The distance between the ring centroids of molecules at (x, y, z) and (-x, -y + 2, -z + 1) is 3.666 (4) Å with an interplanar spacing of 3.486 (4) Å and a centroid offset of 1.13 Å.

Related literature top

For the antibacterial activity of 6-methyl-2-phenyl-5-substituted pyrimidine derivatives, see: Cieplik et al. (2003, 2008). For related structures, see: Cieplik et al. (2006, 2012).

Experimental top

The title compound was obtained by adopting the procedure described previously by Cieplik et al. (2003). 4 g (0.010 mmol) of 4-(3,5-dichlorophenyl)amine-5-chloromethyl-2-phenyl-6-methylpyrimidine was dissolved in 50 ml of chloroform, and 2 g of 3,5-dichloroaniline. The reaction mixture was refluxed for 7 h with vigorous stirring, then was cooled and poured into 100 ml of water. The aqueous solution was extracted three times with chloroform (50 ml). The combined chloroform phases were dried over MgSO4, filtered and concentrated under vacuum. The oily residue was purified by column chromatography on silica gel (200–400 mesh) using CHCl3 as the eluent and by crystallization from methanol to give single crystals (yield: 4.37 g, 82.1%, m.p. 380–382 K).

Refinement top

The N-bonded H atoms were found from difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N). The remaining H atoms were treated as riding on their carrier atoms, with C—H distances in the range 0.95–0.99 Å, and refined with Uiso(H) = 1.2Ueq(C), except methyl groups where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dotted line indicates the intramolecular N—H···N hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure of 5-[(3,5-dichloroanilino)methyl]-N-(3,5-dichlorophenyl)-6-methyl-2-phenylpyrimidin-4-amine, showing N—H···N and C—H···π interactions. Dashed lines indicate intra- and intermolecular hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
5-[(3,5-Dichloroanilino)methyl]-N-(3,5-dichlorophenyl)-6-methyl-2- phenylpyrimidin-4-amine top
Crystal data top
C24H18Cl4N4Z = 2
Mr = 504.22F(000) = 516
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.267 (3) ÅCell parameters from 12129 reflections
b = 11.271 (4) Åθ = 4.3–32.6°
c = 12.788 (4) ŵ = 0.54 mm1
α = 76.53 (5)°T = 85 K
β = 78.95 (5)°Plate, yellow
γ = 81.42 (5)°0.23 × 0.14 × 0.08 mm
V = 1130.4 (7) Å3
Data collection top
Oxford Xcalibur PX with Onyx CCD
diffractometer
5082 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 32.6°, θmin = 4.3°
ϕ and ω scansh = 1212
19215 measured reflectionsk = 1714
8041 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
8041 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C24H18Cl4N4γ = 81.42 (5)°
Mr = 504.22V = 1130.4 (7) Å3
Triclinic, P1Z = 2
a = 8.267 (3) ÅMo Kα radiation
b = 11.271 (4) ŵ = 0.54 mm1
c = 12.788 (4) ÅT = 85 K
α = 76.53 (5)°0.23 × 0.14 × 0.08 mm
β = 78.95 (5)°
Data collection top
Oxford Xcalibur PX with Onyx CCD
diffractometer
5082 reflections with I > 2σ(I)
19215 measured reflectionsRint = 0.041
8041 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.75 e Å3
8041 reflectionsΔρmin = 0.41 e Å3
296 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26701 (17)0.40318 (13)0.58153 (11)0.0170 (3)
C20.1469 (2)0.48670 (15)0.61481 (13)0.0155 (3)
C210.0585 (2)0.45458 (15)0.72891 (13)0.0168 (3)
C220.0633 (2)0.33165 (16)0.78508 (14)0.0198 (3)
H220.12200.26870.75000.024*
C230.0180 (2)0.30171 (17)0.89231 (14)0.0221 (4)
H230.01570.21830.92970.026*
C240.1019 (2)0.39319 (18)0.94450 (14)0.0240 (4)
H240.15580.37251.01790.029*
C250.1074 (2)0.51528 (17)0.88948 (14)0.0225 (4)
H250.16480.57790.92540.027*
C260.0289 (2)0.54593 (16)0.78179 (13)0.0196 (3)
H260.03470.62930.74410.024*
N30.09912 (17)0.59756 (13)0.55551 (11)0.0165 (3)
C40.1808 (2)0.62576 (15)0.45336 (13)0.0163 (3)
N40.14556 (18)0.73910 (13)0.38923 (12)0.0194 (3)
H40.215 (3)0.7569 (17)0.3309 (16)0.023*
C410.0217 (2)0.83536 (15)0.40395 (13)0.0178 (3)
C420.0187 (2)0.93460 (15)0.31393 (14)0.0192 (3)
H420.09560.93180.24880.023*
Cl430.09392 (6)1.15946 (4)0.20955 (4)0.03017 (12)
C430.0962 (2)1.03605 (16)0.32040 (14)0.0213 (4)
C440.2132 (2)1.04310 (16)0.41377 (15)0.0223 (4)
H440.29221.11300.41760.027*
Cl450.35266 (6)0.95034 (4)0.61925 (4)0.02676 (11)
C450.2088 (2)0.94317 (16)0.50077 (14)0.0206 (4)
C460.0948 (2)0.83949 (16)0.49892 (14)0.0200 (3)
H460.09560.77310.56040.024*
C50.3055 (2)0.54229 (15)0.40746 (13)0.0162 (3)
C570.3832 (2)0.57235 (15)0.28867 (13)0.0179 (3)
H5710.46630.50360.27190.021*
H5720.29650.58180.24270.021*
N50.46367 (19)0.68541 (14)0.26224 (11)0.0183 (3)
H50.528 (3)0.6832 (18)0.3034 (16)0.022*
C510.5219 (2)0.73560 (15)0.15245 (13)0.0164 (3)
C520.4940 (2)0.68769 (15)0.06663 (13)0.0175 (3)
H520.43820.61640.08080.021*
Cl530.50653 (6)0.68927 (4)0.14584 (3)0.02527 (10)
C530.5497 (2)0.74650 (16)0.03970 (13)0.0184 (3)
C540.6378 (2)0.84794 (16)0.06569 (13)0.0197 (3)
H540.67730.88510.13900.024*
Cl550.77628 (5)1.01867 (4)0.00557 (4)0.02456 (10)
C550.6651 (2)0.89215 (15)0.02165 (14)0.0184 (3)
C560.6071 (2)0.84064 (15)0.12903 (13)0.0182 (3)
H560.62440.87550.18630.022*
C60.3436 (2)0.43092 (15)0.47665 (13)0.0165 (3)
C610.4707 (2)0.33156 (16)0.44054 (14)0.0209 (3)
H6110.42960.29730.38810.031*
H6120.49040.26650.50390.031*
H6130.57450.36630.40610.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (7)0.0178 (7)0.0174 (7)0.0026 (6)0.0028 (5)0.0029 (5)
C20.0135 (7)0.0169 (8)0.0161 (7)0.0038 (6)0.0020 (6)0.0024 (6)
C210.0139 (7)0.0201 (8)0.0159 (7)0.0034 (6)0.0027 (6)0.0016 (6)
C220.0166 (8)0.0209 (9)0.0209 (8)0.0029 (7)0.0032 (6)0.0017 (7)
C230.0180 (8)0.0247 (9)0.0207 (8)0.0058 (7)0.0045 (7)0.0041 (7)
C240.0185 (8)0.0361 (11)0.0149 (8)0.0052 (8)0.0015 (6)0.0000 (7)
C250.0184 (8)0.0294 (10)0.0189 (8)0.0003 (7)0.0014 (6)0.0063 (7)
C260.0197 (8)0.0203 (9)0.0183 (8)0.0021 (7)0.0029 (6)0.0031 (6)
N30.0139 (6)0.0170 (7)0.0172 (6)0.0017 (6)0.0023 (5)0.0012 (5)
C40.0147 (7)0.0165 (8)0.0170 (7)0.0032 (6)0.0036 (6)0.0002 (6)
N40.0181 (7)0.0200 (7)0.0157 (7)0.0001 (6)0.0008 (5)0.0007 (6)
C410.0156 (8)0.0184 (8)0.0194 (8)0.0025 (7)0.0029 (6)0.0035 (6)
C420.0210 (8)0.0173 (8)0.0188 (8)0.0031 (7)0.0029 (6)0.0024 (6)
Cl430.0383 (3)0.0190 (2)0.0286 (2)0.0018 (2)0.00697 (19)0.00210 (17)
C430.0238 (9)0.0152 (8)0.0251 (9)0.0019 (7)0.0083 (7)0.0013 (7)
C440.0196 (8)0.0182 (9)0.0295 (9)0.0001 (7)0.0060 (7)0.0057 (7)
Cl450.0206 (2)0.0292 (2)0.0291 (2)0.00330 (18)0.00381 (17)0.00958 (18)
C450.0165 (8)0.0229 (9)0.0230 (8)0.0040 (7)0.0004 (6)0.0073 (7)
C460.0183 (8)0.0193 (8)0.0209 (8)0.0034 (7)0.0027 (6)0.0009 (6)
C50.0147 (7)0.0186 (8)0.0148 (7)0.0053 (7)0.0002 (6)0.0024 (6)
C570.0184 (8)0.0189 (8)0.0160 (8)0.0042 (7)0.0005 (6)0.0037 (6)
N50.0184 (7)0.0220 (7)0.0141 (7)0.0063 (6)0.0025 (5)0.0005 (5)
C510.0131 (7)0.0168 (8)0.0163 (7)0.0002 (6)0.0007 (6)0.0012 (6)
C520.0154 (8)0.0170 (8)0.0190 (8)0.0021 (6)0.0013 (6)0.0028 (6)
Cl530.0286 (2)0.0314 (2)0.01672 (19)0.00648 (19)0.00104 (16)0.00705 (17)
C530.0177 (8)0.0198 (8)0.0170 (8)0.0003 (7)0.0022 (6)0.0042 (6)
C540.0166 (8)0.0220 (9)0.0161 (8)0.0003 (7)0.0017 (6)0.0001 (6)
Cl550.0211 (2)0.0214 (2)0.0291 (2)0.00812 (17)0.00107 (17)0.00176 (17)
C550.0131 (7)0.0160 (8)0.0238 (8)0.0027 (6)0.0005 (6)0.0016 (6)
C560.0162 (8)0.0181 (8)0.0197 (8)0.0010 (7)0.0023 (6)0.0037 (6)
C60.0147 (7)0.0185 (8)0.0177 (8)0.0032 (6)0.0032 (6)0.0053 (6)
C610.0220 (9)0.0211 (9)0.0185 (8)0.0016 (7)0.0024 (7)0.0034 (7)
Geometric parameters (Å, º) top
N1—C21.341 (2)C44—H440.9500
N1—C61.355 (2)Cl45—C451.748 (2)
C2—N31.348 (2)C45—C461.389 (3)
C2—C211.490 (2)C46—H460.9500
C21—C261.398 (2)C5—C61.389 (2)
C21—C221.403 (2)C5—C571.512 (2)
C22—C231.394 (2)C57—N51.465 (2)
C22—H220.9500C57—H5710.9900
C23—C241.386 (3)C57—H5720.9900
C23—H230.9500N5—C511.405 (2)
C24—C251.390 (3)N5—H50.81 (2)
C24—H240.9500C51—C521.400 (2)
C25—C261.393 (2)C51—C561.411 (2)
C25—H250.9500C52—C531.390 (2)
C26—H260.9500C52—H520.9500
N3—C41.340 (2)Cl53—C531.7457 (18)
C4—N41.372 (2)C53—C541.388 (2)
C4—C51.425 (2)C54—C551.391 (2)
N4—C411.397 (2)C54—H540.9500
N4—H40.85 (2)Cl55—C551.7428 (19)
C41—C461.403 (2)C55—C561.383 (2)
C41—C421.407 (2)C56—H560.9500
C42—C431.381 (3)C6—C611.508 (2)
C42—H420.9500C61—H6110.9800
Cl43—C431.739 (2)C61—H6120.9800
C43—C441.395 (3)C61—H6130.9800
C44—C451.388 (3)
C2—N1—C6116.77 (15)C46—C45—Cl45118.71 (14)
N1—C2—N3126.46 (14)C45—C46—C41118.27 (16)
N1—C2—C21116.89 (15)C45—C46—H46120.9
N3—C2—C21116.64 (15)C41—C46—H46120.9
C26—C21—C22119.13 (15)C6—C5—C4115.95 (14)
C26—C21—C2120.75 (15)C6—C5—C57122.90 (15)
C22—C21—C2120.12 (16)C4—C5—C57121.06 (15)
C23—C22—C21120.12 (17)N5—C57—C5111.59 (14)
C23—C22—H22119.9N5—C57—H571109.3
C21—C22—H22119.9C5—C57—H571109.3
C24—C23—C22120.26 (17)N5—C57—H572109.3
C24—C23—H23119.9C5—C57—H572109.3
C22—C23—H23119.9H571—C57—H572108.0
C23—C24—C25120.02 (16)C51—N5—C57118.79 (14)
C23—C24—H24120.0C51—N5—H5114.4 (14)
C25—C24—H24120.0C57—N5—H5111.4 (14)
C24—C25—C26120.14 (17)C52—C51—N5122.57 (15)
C24—C25—H25119.9C52—C51—C56119.43 (15)
C26—C25—H25119.9N5—C51—C56117.97 (15)
C25—C26—C21120.32 (17)C53—C52—C51118.68 (15)
C25—C26—H26119.8C53—C52—H52120.7
C21—C26—H26119.8C51—C52—H52120.7
C4—N3—C2116.02 (15)C54—C53—C52123.42 (16)
N3—C4—N4119.79 (16)C54—C53—Cl53118.48 (13)
N3—C4—C5122.54 (15)C52—C53—Cl53118.10 (13)
N4—C4—C5117.68 (15)C53—C54—C55116.30 (15)
C4—N4—C41132.19 (15)C53—C54—H54121.8
C4—N4—H4114.8 (13)C55—C54—H54121.8
C41—N4—H4112.9 (13)C56—C55—C54122.95 (16)
N4—C41—C46125.49 (16)C56—C55—Cl55118.53 (14)
N4—C41—C42115.01 (15)C54—C55—Cl55118.52 (13)
C46—C41—C42119.50 (17)C55—C56—C51119.14 (16)
C43—C42—C41119.91 (16)C55—C56—H56120.4
C43—C42—H42120.0C51—C56—H56120.4
C41—C42—H42120.0N1—C6—C5122.14 (16)
C42—C43—C44121.94 (17)N1—C6—C61115.13 (15)
C42—C43—Cl43119.13 (14)C5—C6—C61122.73 (15)
C44—C43—Cl43118.93 (14)C6—C61—H611109.5
C45—C44—C43116.89 (17)C6—C61—H612109.5
C45—C44—H44121.6H611—C61—H612109.5
C43—C44—H44121.6C6—C61—H613109.5
C44—C45—C46123.47 (17)H611—C61—H613109.5
C44—C45—Cl45117.81 (15)H612—C61—H613109.5
C6—N1—C2—N32.8 (2)Cl45—C45—C46—C41179.12 (13)
C6—N1—C2—C21177.92 (14)N4—C41—C46—C45179.14 (16)
N1—C2—C21—C26159.86 (15)C42—C41—C46—C450.6 (2)
N3—C2—C21—C2619.5 (2)N3—C4—C5—C62.8 (2)
N1—C2—C21—C2219.6 (2)N4—C4—C5—C6176.84 (15)
N3—C2—C21—C22161.04 (15)N3—C4—C5—C57173.95 (15)
C26—C21—C22—C230.2 (2)N4—C4—C5—C576.4 (2)
C2—C21—C22—C23179.27 (15)C6—C5—C57—N5124.24 (17)
C21—C22—C23—C240.9 (3)C4—C5—C57—N559.3 (2)
C22—C23—C24—C250.9 (3)C5—C57—N5—C51171.30 (14)
C23—C24—C25—C260.1 (3)C57—N5—C51—C525.4 (2)
C24—C25—C26—C211.2 (3)C57—N5—C51—C56176.58 (15)
C22—C21—C26—C251.2 (3)N5—C51—C52—C53177.13 (16)
C2—C21—C26—C25178.25 (16)C56—C51—C52—C530.8 (2)
N1—C2—N3—C40.1 (2)C51—C52—C53—C542.7 (3)
C21—C2—N3—C4179.38 (14)C51—C52—C53—Cl53177.45 (13)
C2—N3—C4—N4176.81 (14)C52—C53—C54—C551.9 (3)
C2—N3—C4—C52.8 (2)Cl53—C53—C54—C55178.27 (13)
N3—C4—N4—C418.2 (3)C53—C54—C55—C560.8 (3)
C5—C4—N4—C41172.14 (17)C53—C54—C55—Cl55179.54 (13)
C4—N4—C41—C465.3 (3)C54—C55—C56—C512.6 (3)
C4—N4—C41—C42174.89 (17)Cl55—C55—C56—C51177.80 (13)
N4—C41—C42—C43178.50 (16)C52—C51—C56—C551.7 (2)
C46—C41—C42—C431.3 (2)N5—C51—C56—C55179.73 (15)
C41—C42—C43—C441.1 (3)C2—N1—C6—C52.7 (2)
C41—C42—C43—Cl43178.19 (13)C2—N1—C6—C61176.51 (14)
C42—C43—C44—C450.2 (3)C4—C5—C6—N10.1 (2)
Cl43—C43—C44—C45179.07 (13)C57—C5—C6—N1176.77 (15)
C43—C44—C45—C460.5 (3)C4—C5—C6—C61179.00 (15)
C43—C44—C45—Cl45179.35 (13)C57—C5—C6—C612.3 (2)
C44—C45—C46—C410.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···N50.85 (2)2.19 (2)2.875 (3)137.6 (17)
N5—H5···N1i0.81 (2)2.40 (2)3.171 (3)158.1 (19)
C57—H572···Cg1ii0.992.653.62 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H18Cl4N4
Mr504.22
Crystal system, space groupTriclinic, P1
Temperature (K)85
a, b, c (Å)8.267 (3), 11.271 (4), 12.788 (4)
α, β, γ (°)76.53 (5), 78.95 (5), 81.42 (5)
V3)1130.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.23 × 0.14 × 0.08
Data collection
DiffractometerOxford Xcalibur PX with Onyx CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19215, 8041, 5082
Rint0.041
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 1.03
No. of reflections8041
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4···N50.85 (2)2.19 (2)2.875 (3)137.6 (17)
N5—H5···N1i0.81 (2)2.40 (2)3.171 (3)158.1 (19)
C57—H572···Cg1ii0.992.653.62 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

References

First citationCieplik, J., Pluta, J., Bryndal, I. & Lis, T. (2006). Acta Cryst. C62, o259–o261.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCieplik, J., Pluta, J. & Gubrynowicz, O. (2003). Boll. Chim. Farm. 142, 146–150.  PubMed CAS Google Scholar
First citationCieplik, J., Raginia, M., Pluta, J., Gubrynowicz, O., Bryndal, I. & Lis, T. (2008). Acta Pol. Pharm. Drug Res. 65, 427–434.  CAS Google Scholar
First citationCieplik, J., Stolarczyk, M., Bryndal, I. & Lis, T. (2012). Acta Cryst. E68, o1729–o1730.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds