organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­phen­yl)acetohydrazide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 12 November 2012; accepted 18 November 2012; online 24 November 2012)

In the title compound, C8H9N3O3, the dihedral angle between the benzene ring and the acetohydrazide C—C(=O)—N—N plane [maximum deviation = 0.0471 (13) Å] is 87.62 (8)°. The nitro group is twisted by 19.3 (2)° with respect to the benzene ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into a double-column structure along the b axis.

Related literature

For the chemistry of hydrazides, ses: Domiano et al. (1984[Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281-286.]). For the biological properties of hydrazides, see: Kalsi et al. (2006[Kalsi, R., Shrimali, M., Bhalla, T. N. & Barthwal, J. P. (2006). Indian J. Pharm. Sci. 41, 353-359.]); Masunari & Tavares (2007[Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229-4236.]); Singh et al. (1992[Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993-996.]). For related structures, see: Ahmad et al. (2012[Ahmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o2269.]); Dutkiewicz et al. (2009[Dutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189.]); Liu & Gao (2012[Liu, G. & Gao, J. (2012). Acta Cryst. E68, o1969.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O3

  • Mr = 195.18

  • Monoclinic, P 21

  • a = 6.6962 (5) Å

  • b = 4.9388 (4) Å

  • c = 13.3593 (12) Å

  • β = 92.361 (8)°

  • V = 441.43 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.667, Tmax = 0.925

  • 3829 measured reflections

  • 1967 independent reflections

  • 1824 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.05

  • 1967 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 836 Friedel pairs

  • Flack parameter: 0.3 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.90 (1) 2.21 (2) 3.0752 (19) 163 (2)
N2—H2⋯O1ii 0.85 (2) 2.03 (2) 2.8531 (18) 165 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of hydrazides has been intensely investigated in recent years due to their excellent coordinating capability (Domiano et al., 1984). Hydrazides and their condensation products have displayed diverse range of biological properties such as anti-helmintic (Kalsi et al., 2006), anti-leprotic (Masunari & Tavares, 2007) and anti-depressant (Singh et al., 1992). The crystal structures of some hydrazides, viz., 2-(4-bromophenyl)acetohydrazide (Ahmad et al., 2012), 2-(4-chlorophenoxy)acetohydrazide (Dutkiewicz et al., 2009) and 2-(4-methoxyphenoxy)acetohydrazide (Liu & Gao, 2012) have been reported. In view of the importance of hydrazides, the crystal structure of title compound (I) is reported.

In the title compound, the dihedral angle between the benzene ring and acetohydrazide C2/C1/O1/N2/N1 plane is 87.62 (8)° (Fig. 1). The nitro group is twisted by 19.3 (2)° with the benzene ring. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds (Table 1) link the molecules into a double-column structure along the b axis (Fig. 2).

Related literature top

For the chemistry of hydrazides, ses: Domiano et al. (1984). For the biological properties of hydrazides, see: Kalsi et al. (2006); Masunari & Tavares (2007); Singh et al. (1992). For related structures, see: Ahmad et al. (2012); Dutkiewicz et al. (2009); Liu & Gao (2012). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of methyl 2-(2-nitrophenyl)acetate (2 g, 10.14 mmol) in methanol (20 mL), hydrazine hydrate (2 mL) was added and the reaction mixture was stirred at room temperature for 8 hours (Fig. 3). After the completion of the reaction, methanol was removed under vacuum, water was added, precipitated solid was filtered and dried. The single crystal was grown from mixture methanol: water (2:1) by slow evaporation method and yield of the compound was 95%. (m.p.: 422-424 K).

Refinement top

Atoms H1A, H1B and H2 were refined with a bond-length restraint N—H = 0.86 (2) Å. All remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH) and 0.97 Å (CH2). Isotropic displacement parameters were set to 1.2 times Ueq of the parent atom. The Flack parameter 0.3 (3) and the Hooft y parameter of 0.45 (18) imply that the crystal used was an inversion twin.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds. H atoms not involved in the hydrogen bonds have been removed for clarity.
[Figure 3] Fig. 3. Synthesis of the title compound.
2-(2-Nitrophenyl)acetohydrazide top
Crystal data top
C8H9N3O3F(000) = 204
Mr = 195.18Dx = 1.468 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 1694 reflections
a = 6.6962 (5) Åθ = 3.3–32.5°
b = 4.9388 (4) ŵ = 0.98 mm1
c = 13.3593 (12) ÅT = 173 K
β = 92.361 (8)°Chunk, colorless
V = 441.43 (6) Å30.36 × 0.28 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
1967 independent reflections
Radiation source: Enhance (Mo) X-ray Source1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0416 pixels mm-1θmax = 89.1°, θmin = 7.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 66
Tmin = 0.667, Tmax = 0.925l = 1717
3829 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.016P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1967 reflectionsΔρmax = 0.19 e Å3
136 parametersΔρmin = 0.17 e Å3
4 restraintsAbsolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (3)
Crystal data top
C8H9N3O3V = 441.43 (6) Å3
Mr = 195.18Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.6962 (5) ŵ = 0.98 mm1
b = 4.9388 (4) ÅT = 173 K
c = 13.3593 (12) Å0.36 × 0.28 × 0.08 mm
β = 92.361 (8)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
1967 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1824 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.925Rint = 0.025
3829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.17 e Å3
1967 reflectionsAbsolute structure: Flack (1983), 836 Friedel pairs
136 parametersAbsolute structure parameter: 0.3 (3)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27090 (17)0.8745 (2)0.55928 (9)0.0360 (3)
O20.0246 (2)0.4300 (4)0.71073 (10)0.0632 (5)
O30.0790 (2)0.4790 (4)0.85895 (11)0.0576 (4)
N10.1751 (2)0.4904 (3)0.41437 (10)0.0360 (3)
H1A0.202 (3)0.660 (4)0.4013 (15)0.043*
H1B0.042 (2)0.494 (5)0.4186 (13)0.043*
N20.2580 (2)0.4374 (3)0.51138 (10)0.0318 (3)
H20.286 (3)0.275 (4)0.5269 (13)0.038*
N30.0398 (2)0.5265 (3)0.79401 (10)0.0358 (4)
C10.3052 (2)0.6316 (3)0.57676 (12)0.0274 (3)
C20.4158 (2)0.5384 (4)0.67189 (12)0.0338 (4)
H2A0.37530.35470.68680.041*
H2B0.55800.53630.66090.041*
C30.3777 (2)0.7162 (3)0.76100 (11)0.0290 (3)
C40.2066 (2)0.7141 (3)0.81839 (11)0.0293 (3)
C50.1834 (2)0.8801 (4)0.90089 (12)0.0358 (4)
H50.06820.86960.93720.043*
C60.3327 (3)1.0607 (4)0.92857 (13)0.0391 (4)
H60.31821.17500.98310.047*
C70.5050 (3)1.0703 (4)0.87408 (13)0.0392 (4)
H70.60641.19160.89220.047*
C80.5260 (2)0.9000 (4)0.79295 (12)0.0338 (4)
H80.64350.90800.75830.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (6)0.0188 (6)0.0449 (7)0.0021 (5)0.0010 (5)0.0046 (5)
O20.0697 (9)0.0736 (12)0.0466 (8)0.0375 (9)0.0085 (6)0.0133 (8)
O30.0440 (7)0.0653 (11)0.0651 (9)0.0193 (7)0.0216 (6)0.0069 (8)
N10.0431 (7)0.0306 (8)0.0346 (7)0.0004 (7)0.0062 (6)0.0013 (6)
N20.0423 (7)0.0197 (7)0.0337 (7)0.0046 (6)0.0070 (5)0.0036 (6)
N30.0339 (7)0.0332 (9)0.0405 (8)0.0061 (6)0.0037 (6)0.0013 (6)
C10.0296 (7)0.0197 (8)0.0336 (8)0.0031 (6)0.0087 (6)0.0028 (6)
C20.0387 (8)0.0261 (9)0.0369 (9)0.0096 (7)0.0048 (6)0.0034 (7)
C30.0314 (7)0.0254 (8)0.0303 (7)0.0034 (6)0.0006 (6)0.0079 (7)
C40.0288 (7)0.0242 (8)0.0347 (8)0.0011 (6)0.0007 (6)0.0043 (7)
C50.0385 (8)0.0353 (10)0.0338 (8)0.0005 (8)0.0048 (6)0.0011 (7)
C60.0509 (10)0.0333 (10)0.0330 (9)0.0026 (8)0.0003 (7)0.0012 (7)
C70.0432 (9)0.0332 (10)0.0404 (9)0.0089 (8)0.0076 (7)0.0077 (8)
C80.0300 (7)0.0351 (10)0.0362 (8)0.0023 (7)0.0003 (6)0.0095 (7)
Geometric parameters (Å, º) top
O1—C11.242 (2)C2—H2B0.9700
O2—N31.2107 (19)C3—C81.399 (2)
O3—N31.2236 (18)C3—C41.405 (2)
N1—N21.413 (2)C4—C51.387 (2)
N1—H1A0.877 (16)C5—C61.379 (3)
N1—H1B0.898 (14)C5—H50.9300
N2—C11.327 (2)C6—C71.390 (3)
N2—H20.845 (16)C6—H60.9300
N3—C41.477 (2)C7—C81.384 (3)
C1—C21.516 (2)C7—H70.9300
C2—C31.509 (2)C8—H80.9300
C2—H2A0.9700
N2—N1—H1A106.5 (14)C8—C3—C4115.04 (15)
N2—N1—H1B107.5 (12)C8—C3—C2118.50 (14)
H1A—N1—H1B102 (2)C4—C3—C2126.45 (15)
C1—N2—N1122.93 (15)C5—C4—C3123.33 (15)
C1—N2—H2118.6 (13)C5—C4—N3115.94 (13)
N1—N2—H2118.3 (13)C3—C4—N3120.72 (14)
O2—N3—O3122.93 (16)C6—C5—C4119.47 (15)
O2—N3—C4118.92 (13)C6—C5—H5120.3
O3—N3—C4118.13 (14)C4—C5—H5120.3
O1—C1—N2122.50 (16)C5—C6—C7119.32 (16)
O1—C1—C2122.07 (16)C5—C6—H6120.3
N2—C1—C2115.32 (15)C7—C6—H6120.3
C3—C2—C1113.10 (14)C8—C7—C6120.18 (17)
C3—C2—H2A109.0C8—C7—H7119.9
C1—C2—H2A109.0C6—C7—H7119.9
C3—C2—H2B109.0C7—C8—C3122.65 (15)
C1—C2—H2B109.0C7—C8—H8118.7
H2A—C2—H2B107.8C3—C8—H8118.7
N1—N2—C1—O13.6 (2)O3—N3—C4—C518.1 (2)
N1—N2—C1—C2172.72 (13)O2—N3—C4—C320.3 (2)
O1—C1—C2—C332.4 (2)O3—N3—C4—C3160.87 (17)
N2—C1—C2—C3151.21 (14)C3—C4—C5—C61.0 (2)
C1—C2—C3—C8103.44 (17)N3—C4—C5—C6179.95 (15)
C1—C2—C3—C477.9 (2)C4—C5—C6—C70.9 (3)
C8—C3—C4—C50.0 (2)C5—C6—C7—C80.0 (3)
C2—C3—C4—C5178.63 (16)C6—C7—C8—C31.0 (3)
C8—C3—C4—N3178.96 (14)C4—C3—C8—C71.0 (2)
C2—C3—C4—N30.3 (2)C2—C3—C8—C7179.73 (16)
O2—N3—C4—C5160.74 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.90 (1)2.21 (2)3.0752 (19)163 (2)
N2—H2···O1ii0.85 (2)2.03 (2)2.8531 (18)165 (2)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H9N3O3
Mr195.18
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)6.6962 (5), 4.9388 (4), 13.3593 (12)
β (°) 92.361 (8)
V3)441.43 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.98
Crystal size (mm)0.36 × 0.28 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.667, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
3829, 1967, 1824
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.05
No. of reflections1967
No. of parameters136
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17
Absolute structureFlack (1983), 836 Friedel pairs
Absolute structure parameter0.3 (3)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.898 (14)2.207 (16)3.0752 (19)163 (2)
N2—H2···O1ii0.845 (16)2.030 (18)2.8531 (18)164.6 (19)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y1, z.
 

Acknowledgements

ASP thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAhmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o2269.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDomiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.  CSD CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKalsi, R., Shrimali, M., Bhalla, T. N. & Barthwal, J. P. (2006). Indian J. Pharm. Sci. 41, 353–359.  Google Scholar
First citationLiu, G. & Gao, J. (2012). Acta Cryst. E68, o1969.  CSD CrossRef IUCr Journals Google Scholar
First citationMasunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993–996.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds