[Journal logo]

Volume 68 
Part 12 
Page o3431  
December 2012  

Received 12 November 2012
Accepted 14 November 2012
Online 24 November 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.050
wR = 0.112
Data-to-parameter ratio = 17.0
Details
Open access

Morpholine-4-carboxamidinium ethyl carbonate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
Correspondence e-mail: Ioannis.Tiritiris@htw-aalen.de

The asymmetric unit of the title salt, C5H12N3O+·C3H5O3-, contains two carboxamidinium and two ethyl carbonate ions. In the crystal, the C-N bond lengths in the central CN3 units of the cations range between 1.324 (2) and 1.352 (2) Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal-planar geometry and the positive charges are delocalized in the CN3 planes. The morpholine rings are in chair conformations. The C-O bond lengths in both ethyl carbonate ions are characteristic for delocalized double bonds [1.243 (2)-1.251 (2) Å] and typical single bonds [1.368 (2) and 1.375 (2) Å]. In the crystal, N-H...O hydrogen bonds between cations and anions generate a two-dimensional network in the ac plane.

Related literature

For the synthesis and crystal structures of guanidinium hydrogen carbonates, see: Tiritiris et al. (2011[Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407-418.]). For the crystal structure of 4-morpholinecarboxamidine, see: Tiritiris (2012a[Tiritiris, I. (2012a). Acta Cryst. E68, o3118.]). For the crystal structure of piperidine-1-carboxamidinium ethyl carbonate, see: Tiritiris (2012b[Tiritiris, I. (2012b). Acta Cryst. E68, o3310.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N3O+·C3H5O3-

  • Mr = 219.25

  • Monoclinic, P 21 /n

  • a = 10.2163 (5) Å

  • b = 20.8874 (9) Å

  • c = 10.4616 (5) Å

  • [beta] = 109.505 (2)°

  • V = 2104.31 (17) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.11 mm-1

  • T = 100 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Bruker-Nonius KappaCCD diffractometer

  • 9902 measured reflections

  • 5199 independent reflections

  • 2981 reflections with I > 2[sigma](I)

  • Rint = 0.055

Refinement
  • R[F2 > 2[sigma](F2)] = 0.050

  • wR(F2) = 0.112

  • S = 1.00

  • 5199 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.25 e Å-3

  • [Delta][rho]min = -0.30 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H11...O4i 0.84 (2) 2.12 (2) 2.944 (1) 168 (1)
N1-H12...O3ii 0.89 (2) 1.91 (2) 2.795 (1) 174 (1)
N2-H21...O6 0.85 (2) 1.97 (2) 2.807 (1) 168 (1)
N2-H22...O4ii 0.92 (2) 1.95 (2) 2.851 (1) 164 (1)
N4-H41...O6ii 0.86 (2) 1.97 (2) 2.817 (1) 167 (1)
N4-H42...O7i 0.93 (2) 2.00 (2) 2.889 (1) 159 (1)
N5-H51...O7ii 0.90 (2) 1.99 (2) 2.879 (1) 172 (1)
N5-H52...O3iii 0.90 (2) 1.94 (2) 2.776 (1) 154 (1)
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2441 ).


Acknowledgements

The author thanks Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

References

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.
Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Tiritiris, I. (2012a). Acta Cryst. E68, o3118.  [CSD] [CrossRef] [details]
Tiritiris, I. (2012b). Acta Cryst. E68, o3310.  [CrossRef] [details]
Tiritiris, I., Mezger, J., Stoyanov, E. V. & Kantlehner, W. (2011). Z. Naturforsch. Teil B, 66, 407-418.  [CrossRef] [ChemPort]


Acta Cryst (2012). E68, o3431  [ doi:10.1107/S1600536812046922 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.