supplementary materials


ld2076 scheme

Acta Cryst. (2012). E68, o3289    [ doi:10.1107/S1600536812045084 ]

(2RS,5'RS)-3',4'-Bis(4-chlorophenyl)-3,4-dihydrospiro[acridine-2,5'(4'H)-[1,2]oxazol]-1(2H)-one

P. Narayanan, S. U. Maheswari and K. Sethusankar

Abstract top

The title compound, C27H18Cl2N2O2, represents a racemic mixture of the corresponding R,R and S,S diastereomers. The isoxazoline ring adopts an envelope conformation with the spiro C atom deviating by 0.093 (2) Å from the rest of the ring. The six-membered keto-substituted carbocycle has a sofa conformation with the methylene C atom adjacent to the spiro center deviating by 0.289 (2) Å from the mean plane of the remaining atoms. In the crystal, molecules are linked via C-H...Cl interactions and C-Cl...O halogen bonds [2.958 (2) Å, 171.39 (7)°], which generate bifurcated R21(6) ring motifs resulting in C21[R21(6)] chains running parallel to [010].

Comment top

Acridine derivatives are biologically important compounds, which are found to possess mutagenic, antitumour (Talacki et al., 1974), antibacterial, antiamoebic, hypersensitive, antiinflammatory and antiimplantation (Asthana et al., 1991) activities. Also, they have been shown to exert toxicity towards plasmodium, trypanosoma and leishmania parasites (Di Giorgio et al., 2005). Against this backround, X-ray study of the title compound has been carried out to study its structural aspects.

The title compound C27 H18 Cl2 N2 O2, consists of an isoxazole ring spiro attached to acridine ring system and the phenyl rings (C22–C27) and (C16–C21). X-ray analysis confirms the molecular stereochemistry as illustrated in Fig. 1. The quinoline ring system is essentially planar with a maximum deviation of -0.049 (2) Å for C9 atom. The quinoline ring system forms a dihedral angle of 86.12 (10) ° with the chlorophenyl ring (C16–C21), which shows that they are almost orthogonal to each other. The chlorophenyl ring (C22–C27) forms a dihedral angle of 74.99 (9) ° with the quinoline ring system.

The six membered carbocyclic ring (C8–C13) adopts a sofa conformation with the deviation of C11 by -0.289 (2) Å from the mean plane formed by the remaining ring atoms. The mean plane of the six membered ring (C8–C13) forms a dihedral angle of 85.34 (11) ° with the chlorophenyl ring (C16–C21), which shows that they are almost perpendicular to each other. The oxygen atom (O1) significantly deviates from the mean plane of the ring (C8–C13) by -0.3368 (18) Å. The mean plane of the six membered carbocyclic ring (C8–C13) forms a dihedral angle of 2.53 (8) ° with the quinoline ring system, which shows that they are almost coplanar.

The isoxazole ring (N2/O2/C12/C14/C15) adopts an envelope conformation with a maximum deviation of C12 by 0.0935 (18) Å from the mean plane formed by the remaining ring atoms. The isoxazole ring forms the dihedral angles of 82.77 (8) °, 83.52 (9) ° and 83.45 (10) ° with the quinoline bicyclic ring system, the six membered ring (C8–C13) and the phenyl ring (C22–C27), respectively. The chlorine atoms (Cl1 & Cl2) are significantly deviate from the phenyl ring (C16–C21) and (C22–C27) by -0.0113 (19) Å and 0.0666 (8) Å, respectively. The title compound exhibits structural similarities with already reported related structures (Sridharan et al., 2009; Trzybiński et al., 2010).

In the crystal, the molecules are linked via C10—H10A···Cl2i intermolecular interaction and C25i—Cl2i···O2 halogen bonding (XB), between the chlorine atom(Cl2) and keto group oxygen atom(O2) of the acridine ring system [Cl2i···O2 = 2.958 (2) Å and a nearly linear C25i—Cl2i···O2 angle of 171.39 (7) °], which generate bifurcated R21(6) ring motifs resulting in chains with the full graph-set designation of C21[R21(6)] running parallel to [0 1 0] axis. (Bernstein et al., 1995) (Fig. 2). The symmetry code: (i). 3/2 - x,-1/2 + y,1/2 - z

Related literature top

For the uses and biological importance of acridines, see: Asthana et al. (1991); Di Giorgio et al. (2005); Talacki et al. (1974). For related structures, see: Sridharan et al. (2009); Trzybiński et al. (2010). For graph-set notation, see: Bernstein et al.(1995)

Experimental top

A mixture of 3,4-dihydroacridin-1(2H)-one(200 mg, 1 mmol), 4-chloro benzaldehyde (168 mg, 1.2 mmol) and KOH (84 mg, 1.5 mmol) in DME (3 ml) was stirred at ambient temperature for 30 min. Then, 4-chloro-N-hydroxybenzimi doyl chloride (285 mg, 1.5 mmol) was added subsequently to the reaction mixture and stirred at room temperature for 10–12 h. The progress of the reaction was monitored by thin-layer chromatography with petroleum ether-ethylacetate (4:1 v/v) mixture as eluent. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (2x20 ml), washed with water (2x10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue thus obtained recrystallized from diethyl-ether to afford (2S,3'S)-3',4'-bis(4-chlorophenyl)-3,4-dihydro-1H,3'H-spiro[acridine-2,2'-[1,5]oxazole]-1-one as off white solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Yield = 89%,

m.p. = 214–216 °C.

Refinement top

The positions of the hydrogen atoms were localized from the difference electron density maps and the distances were geometrically constrained. The H atoms bound to the C atoms, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine, d(C—H) = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along c-axis, showing bifurcated bonding including Cl2: C10—H10A···Cl2i hydrogen bonds and C25i—Cl2i···O2 halogen bonds, resulting into supramolecular chains C12[R12(6)] running parallel to [0 1 0] direction. The hydrogen atoms not involved in the hydrogen bonding have been excluded for clarity. The symmetry code: (i). 3/2 - x,-1/2 + y,1/2 - z.
(2RS,5'RS)-3',4'-Bis(4-chlorophenyl)-3,4- dihydrospiro[acridine-2,5'(4'H)-[1,2]oxazol]-1(2H)-one top
Crystal data top
C27H18Cl2N2O2F(000) = 976
Mr = 473.33Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5960 reflections
a = 7.6493 (4) Åθ = 2.5–29.1°
b = 15.1553 (7) ŵ = 0.32 mm1
c = 19.4802 (8) ÅT = 293 K
β = 90.392 (1)°Block, colourless
V = 2258.24 (18) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5960 independent reflections
Radiation source: fine-focus sealed tube4189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 29.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 108
Tmin = 0.895, Tmax = 0.924k = 1920
26147 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.055P)2 + 1.1784P]
where P = (Fo2 + 2Fc2)/3
5960 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C27H18Cl2N2O2V = 2258.24 (18) Å3
Mr = 473.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6493 (4) ŵ = 0.32 mm1
b = 15.1553 (7) ÅT = 293 K
c = 19.4802 (8) Å0.35 × 0.30 × 0.25 mm
β = 90.392 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4189 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.924Rint = 0.026
26147 measured reflectionsθmax = 29.1°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.51 e Å3
S = 1.02Δρmin = 0.66 e Å3
5960 reflectionsAbsolute structure: ?
298 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0838 (3)0.35507 (15)0.51570 (10)0.0529 (5)
C20.0846 (4)0.30775 (17)0.57843 (12)0.0673 (7)
H20.18720.30310.60410.081*
C30.0648 (4)0.26917 (18)0.60111 (13)0.0744 (8)
H30.06240.23710.64180.089*
C40.2209 (4)0.27669 (17)0.56474 (14)0.0713 (8)
H40.32140.24980.58140.086*
C50.2280 (4)0.32318 (16)0.50486 (13)0.0645 (6)
H50.33320.32830.48090.077*
C60.0756 (3)0.36356 (14)0.47927 (11)0.0514 (5)
C70.0714 (3)0.41213 (14)0.41763 (11)0.0487 (5)
H70.17390.42150.39280.058*
C80.0829 (3)0.44546 (13)0.39442 (9)0.0412 (4)
C90.2379 (3)0.43039 (14)0.43295 (9)0.0447 (5)
C100.4114 (3)0.45889 (15)0.40672 (10)0.0500 (5)
H10A0.47160.40770.38860.060*
H10B0.48040.48120.44490.060*
C110.4037 (3)0.52926 (14)0.35131 (10)0.0467 (5)
H11A0.37750.58570.37230.056*
H11B0.51730.53390.32980.056*
C120.2668 (2)0.50947 (12)0.29669 (9)0.0370 (4)
C130.0870 (3)0.49484 (13)0.32843 (9)0.0403 (4)
C140.2591 (2)0.57197 (12)0.23452 (9)0.0368 (4)
H140.15170.60720.23580.044*
C150.2486 (2)0.50547 (12)0.17730 (9)0.0387 (4)
C160.2293 (3)0.52867 (13)0.10425 (10)0.0438 (4)
C170.2685 (4)0.46792 (16)0.05371 (11)0.0595 (6)
H170.30500.41160.06620.071*
C180.2543 (4)0.48944 (18)0.01475 (11)0.0668 (7)
H180.28030.44800.04840.080*
C190.2013 (3)0.57288 (18)0.03267 (11)0.0604 (6)
C200.1643 (3)0.63492 (18)0.01599 (12)0.0635 (6)
H200.13020.69140.00300.076*
C210.1782 (3)0.61285 (16)0.08492 (11)0.0545 (5)
H210.15300.65470.11830.065*
C220.4159 (2)0.63149 (12)0.22639 (9)0.0380 (4)
C230.4050 (3)0.72015 (13)0.24167 (10)0.0449 (4)
H230.29850.74420.25480.054*
C240.5513 (3)0.77360 (14)0.23758 (11)0.0528 (5)
H240.54400.83340.24790.063*
C250.7065 (3)0.73722 (16)0.21810 (11)0.0532 (6)
C260.7203 (3)0.64889 (16)0.20123 (12)0.0561 (6)
H260.82660.62530.18740.067*
C270.5743 (3)0.59690 (14)0.20536 (11)0.0488 (5)
H270.58170.53750.19390.059*
N10.2385 (3)0.38799 (13)0.49232 (8)0.0536 (5)
N20.2748 (2)0.42569 (11)0.19573 (8)0.0430 (4)
O10.0456 (2)0.51723 (12)0.29909 (8)0.0617 (4)
O20.30472 (18)0.42271 (8)0.26726 (6)0.0424 (3)
Cl10.18361 (12)0.59980 (6)0.11902 (3)0.0901 (3)
Cl20.89238 (10)0.80315 (5)0.21560 (4)0.0828 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0719 (15)0.0483 (12)0.0386 (10)0.0143 (10)0.0080 (10)0.0029 (8)
C20.091 (2)0.0665 (16)0.0440 (11)0.0183 (14)0.0048 (12)0.0111 (11)
C30.109 (2)0.0636 (16)0.0510 (13)0.0186 (15)0.0246 (15)0.0167 (11)
C40.090 (2)0.0566 (15)0.0682 (16)0.0104 (14)0.0296 (15)0.0166 (12)
C50.0696 (16)0.0603 (15)0.0638 (14)0.0094 (12)0.0178 (12)0.0145 (11)
C60.0639 (14)0.0440 (11)0.0464 (10)0.0117 (10)0.0131 (10)0.0054 (9)
C70.0501 (12)0.0489 (12)0.0471 (10)0.0093 (9)0.0046 (9)0.0078 (9)
C80.0470 (11)0.0410 (10)0.0355 (8)0.0083 (8)0.0027 (8)0.0008 (7)
C90.0520 (12)0.0475 (11)0.0345 (9)0.0096 (9)0.0014 (8)0.0033 (8)
C100.0476 (12)0.0667 (14)0.0355 (9)0.0069 (10)0.0093 (8)0.0007 (9)
C110.0443 (11)0.0532 (12)0.0424 (10)0.0016 (9)0.0057 (8)0.0032 (9)
C120.0387 (10)0.0352 (9)0.0369 (8)0.0038 (7)0.0024 (7)0.0002 (7)
C130.0415 (11)0.0414 (10)0.0381 (9)0.0043 (8)0.0010 (8)0.0022 (7)
C140.0356 (10)0.0346 (9)0.0400 (9)0.0017 (7)0.0016 (7)0.0009 (7)
C150.0395 (10)0.0386 (10)0.0379 (9)0.0043 (8)0.0016 (7)0.0009 (7)
C160.0460 (11)0.0468 (11)0.0385 (9)0.0093 (9)0.0029 (8)0.0045 (8)
C170.0833 (18)0.0516 (13)0.0435 (11)0.0079 (12)0.0013 (11)0.0003 (9)
C180.0899 (19)0.0700 (16)0.0403 (11)0.0166 (14)0.0019 (11)0.0052 (10)
C190.0641 (15)0.0789 (17)0.0382 (10)0.0215 (13)0.0078 (10)0.0109 (10)
C200.0731 (16)0.0661 (15)0.0511 (12)0.0023 (13)0.0066 (11)0.0175 (11)
C210.0635 (14)0.0571 (13)0.0430 (10)0.0016 (11)0.0023 (10)0.0060 (9)
C220.0409 (10)0.0351 (9)0.0380 (9)0.0011 (8)0.0025 (7)0.0016 (7)
C230.0503 (12)0.0382 (10)0.0462 (10)0.0016 (8)0.0012 (9)0.0003 (8)
C240.0674 (15)0.0393 (11)0.0515 (11)0.0114 (10)0.0097 (10)0.0036 (9)
C250.0511 (13)0.0591 (14)0.0491 (11)0.0207 (10)0.0135 (9)0.0163 (10)
C260.0395 (12)0.0659 (15)0.0629 (13)0.0025 (10)0.0002 (10)0.0089 (11)
C270.0432 (11)0.0414 (11)0.0617 (12)0.0006 (9)0.0020 (9)0.0020 (9)
N10.0654 (12)0.0597 (11)0.0358 (8)0.0118 (9)0.0019 (8)0.0041 (8)
N20.0510 (10)0.0412 (9)0.0368 (8)0.0002 (7)0.0032 (7)0.0015 (6)
O10.0410 (9)0.0822 (12)0.0620 (9)0.0053 (8)0.0031 (7)0.0296 (8)
O20.0531 (8)0.0377 (7)0.0365 (6)0.0092 (6)0.0028 (6)0.0010 (5)
Cl10.1173 (7)0.1131 (6)0.0398 (3)0.0268 (5)0.0110 (3)0.0189 (3)
Cl20.0693 (4)0.0932 (5)0.0855 (5)0.0443 (4)0.0209 (4)0.0288 (4)
Geometric parameters (Å, º) top
C1—N11.365 (3)C14—C151.504 (2)
C1—C61.413 (3)C14—C221.510 (3)
C1—C21.417 (3)C14—H140.9800
C2—C31.360 (4)C15—N21.277 (2)
C2—H20.9300C15—C161.472 (3)
C3—C41.389 (4)C16—C171.382 (3)
C3—H30.9300C16—C211.386 (3)
C4—C51.363 (3)C17—C181.376 (3)
C4—H40.9300C17—H170.9300
C5—C61.411 (3)C18—C191.372 (4)
C5—H50.9300C18—H180.9300
C6—C71.409 (3)C19—C201.366 (4)
C7—C81.364 (3)C19—Cl11.735 (2)
C7—H70.9300C20—C211.387 (3)
C8—C91.417 (3)C20—H200.9300
C8—C131.488 (3)C21—H210.9300
C9—N11.323 (2)C22—C231.379 (3)
C9—C101.490 (3)C22—C271.385 (3)
C10—C111.518 (3)C23—C241.384 (3)
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700C24—C251.365 (3)
C11—C121.518 (3)C24—H240.9300
C11—H11A0.9700C25—C261.383 (3)
C11—H11B0.9700C25—Cl21.739 (2)
C12—O21.464 (2)C26—C271.370 (3)
C12—C131.528 (3)C26—H260.9300
C12—C141.538 (2)C27—H270.9300
C13—O11.209 (2)N2—O21.4111 (19)
N1—C1—C6123.12 (18)C15—C14—C22111.14 (15)
N1—C1—C2118.3 (2)C15—C14—C1299.93 (14)
C6—C1—C2118.5 (2)C22—C14—C12115.11 (15)
C3—C2—C1119.9 (3)C15—C14—H14110.1
C3—C2—H2120.0C22—C14—H14110.1
C1—C2—H2120.0C12—C14—H14110.1
C2—C3—C4121.4 (2)N2—C15—C16120.84 (17)
C2—C3—H3119.3N2—C15—C14114.74 (16)
C4—C3—H3119.3C16—C15—C14124.10 (16)
C5—C4—C3120.5 (3)C17—C16—C21118.80 (19)
C5—C4—H4119.7C17—C16—C15120.57 (19)
C3—C4—H4119.7C21—C16—C15120.58 (19)
C4—C5—C6119.9 (3)C18—C17—C16121.1 (2)
C4—C5—H5120.1C18—C17—H17119.5
C6—C5—H5120.1C16—C17—H17119.5
C7—C6—C5123.5 (2)C19—C18—C17119.1 (2)
C7—C6—C1116.8 (2)C19—C18—H18120.5
C5—C6—C1119.7 (2)C17—C18—H18120.5
C8—C7—C6120.1 (2)C20—C19—C18121.3 (2)
C8—C7—H7120.0C20—C19—Cl1119.7 (2)
C6—C7—H7120.0C18—C19—Cl1118.9 (2)
C7—C8—C9119.17 (18)C19—C20—C21119.4 (2)
C7—C8—C13119.74 (18)C19—C20—H20120.3
C9—C8—C13121.07 (18)C21—C20—H20120.3
N1—C9—C8122.6 (2)C16—C21—C20120.3 (2)
N1—C9—C10116.29 (18)C16—C21—H21119.9
C8—C9—C10121.05 (17)C20—C21—H21119.9
C9—C10—C11114.63 (17)C23—C22—C27119.15 (19)
C9—C10—H10A108.6C23—C22—C14120.67 (18)
C11—C10—H10A108.6C27—C22—C14120.15 (17)
C9—C10—H10B108.6C22—C23—C24120.5 (2)
C11—C10—H10B108.6C22—C23—H23119.8
H10A—C10—H10B107.6C24—C23—H23119.8
C12—C11—C10112.53 (17)C25—C24—C23119.0 (2)
C12—C11—H11A109.1C25—C24—H24120.5
C10—C11—H11A109.1C23—C24—H24120.5
C12—C11—H11B109.1C24—C25—C26121.7 (2)
C10—C11—H11B109.1C24—C25—Cl2119.25 (19)
H11A—C11—H11B107.8C26—C25—Cl2119.06 (19)
O2—C12—C11108.33 (15)C27—C26—C25118.6 (2)
O2—C12—C13102.09 (14)C27—C26—H26120.7
C11—C12—C13111.31 (15)C25—C26—H26120.7
O2—C12—C14104.56 (13)C26—C27—C22121.0 (2)
C11—C12—C14116.92 (16)C26—C27—H27119.5
C13—C12—C14112.23 (15)C22—C27—H27119.5
O1—C13—C8121.80 (18)C9—N1—C1118.12 (19)
O1—C13—C12121.48 (17)C15—N2—O2109.40 (15)
C8—C13—C12116.55 (16)N2—O2—C12109.06 (12)
N1—C1—C2—C3175.8 (2)C12—C14—C15—N29.7 (2)
C6—C1—C2—C32.2 (3)C22—C14—C15—C1661.2 (2)
C1—C2—C3—C41.5 (4)C12—C14—C15—C16176.79 (18)
C2—C3—C4—C50.1 (4)N2—C15—C16—C1711.1 (3)
C3—C4—C5—C60.4 (4)C14—C15—C16—C17162.0 (2)
C4—C5—C6—C7179.5 (2)N2—C15—C16—C21171.5 (2)
C4—C5—C6—C10.4 (4)C14—C15—C16—C2115.4 (3)
N1—C1—C6—C72.9 (3)C21—C16—C17—C181.2 (4)
C2—C1—C6—C7179.1 (2)C15—C16—C17—C18178.6 (2)
N1—C1—C6—C5176.2 (2)C16—C17—C18—C190.4 (4)
C2—C1—C6—C51.7 (3)C17—C18—C19—C200.7 (4)
C5—C6—C7—C8176.7 (2)C17—C18—C19—Cl1180.0 (2)
C1—C6—C7—C82.5 (3)C18—C19—C20—C210.9 (4)
C6—C7—C8—C90.1 (3)Cl1—C19—C20—C21179.79 (19)
C6—C7—C8—C13178.54 (18)C17—C16—C21—C200.9 (3)
C7—C8—C9—N12.7 (3)C15—C16—C21—C20178.4 (2)
C13—C8—C9—N1178.90 (18)C19—C20—C21—C160.1 (4)
C7—C8—C9—C10174.79 (19)C15—C14—C22—C23141.26 (18)
C13—C8—C9—C103.6 (3)C12—C14—C22—C23106.1 (2)
N1—C9—C10—C11162.66 (18)C15—C14—C22—C2740.7 (2)
C8—C9—C10—C1119.7 (3)C12—C14—C22—C2772.0 (2)
C9—C10—C11—C1245.5 (2)C27—C22—C23—C241.4 (3)
C10—C11—C12—O256.8 (2)C14—C22—C23—C24176.62 (18)
C10—C11—C12—C1354.6 (2)C22—C23—C24—C250.1 (3)
C10—C11—C12—C14174.55 (16)C23—C24—C25—C261.2 (3)
C7—C8—C13—O110.5 (3)C23—C24—C25—Cl2177.88 (16)
C9—C8—C13—O1171.1 (2)C24—C25—C26—C271.0 (3)
C7—C8—C13—C12164.82 (18)Cl2—C25—C26—C27178.05 (17)
C9—C8—C13—C1213.6 (3)C25—C26—C27—C220.4 (3)
O2—C12—C13—O198.6 (2)C23—C22—C27—C261.6 (3)
C11—C12—C13—O1146.0 (2)C14—C22—C27—C26176.45 (19)
C14—C12—C13—O112.8 (3)C8—C9—N1—C12.3 (3)
O2—C12—C13—C876.68 (18)C10—C9—N1—C1175.28 (19)
C11—C12—C13—C838.7 (2)C6—C1—N1—C90.6 (3)
C14—C12—C13—C8171.91 (16)C2—C1—N1—C9178.5 (2)
O2—C12—C14—C1513.95 (17)C16—C15—N2—O2174.59 (16)
C11—C12—C14—C15133.71 (17)C14—C15—N2—O20.9 (2)
C13—C12—C14—C1595.92 (17)C15—N2—O2—C129.2 (2)
O2—C12—C14—C22105.16 (17)C11—C12—O2—N2140.22 (15)
C11—C12—C14—C2214.6 (2)C13—C12—O2—N2102.23 (15)
C13—C12—C14—C22144.98 (16)C14—C12—O2—N214.85 (18)
C22—C14—C15—N2112.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl2i0.972.783.681 (2)154
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl2i0.972.783.681 (2)154.0
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Acknowledgements top

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

references
References top

Asthana, P., Rastogi, S., Ghose, S. & Das, S. R. (1991). Indian J. Chem. Sect. B, 30, 893–900.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumenil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560–5568.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Sridharan, M., Rajendra Prasad, K. J. & Zeller, M. (2009). Acta Cryst. E65, o1064.

Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.

Trzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o828–o829.