[Journal logo]

Volume 68 
Part 12 
Pages m1532-m1533  
December 2012  

Received 3 November 2012
Accepted 20 November 2012
Online 24 November 2012

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.008 Å
R = 0.039
wR = 0.120
Data-to-parameter ratio = 12.6
Details
Open access

[(Triethylenetetramine)copper(II)]-[mu]-cyanido-[kappa]2N:C-[bis(cyanido-[kappa]C)copper(I)]

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and bThe King's College, Briarcliff Manor, NY 10510, USA
Correspondence e-mail: pcorfield@fordham.edu

The title compound, [Cu2(CN)3(C6H18N4)] or [Cu(trien)(CN)Cu(CN)2], where trien is triethylenetetramine, is a mixed-valence complex crystallizing as discrete molecules, with CuI and CuII ions linked by a bridging cyanide group. The CuII ion is in a square-pyramidal coordination environment, with the N atoms of the tetradentate trien ligand occupying the basal positions and Cu-N bond lengths in the range 2.028 (4)-2.047 (4) Å. An N-bonded cyanide group is in the apical position, with a slightly longer Cu-N bond length of 2.127 (4) Å. The CuI ion exhibits a trigonal-planar coordination geometry, bonded to the C atoms of the bridging cyanide group and two terminal cyanide groups with Cu-C bond lengths in the range 1.925 (4)-1.948 (5) Å. In the crystal, hydrogen bonding involving the tertiary N-H groups of the trien ligand and N atoms of symmetry-related terminal cyanide groups links molecules into a ribbon extending in the b-axis direction.

Related literature

For mixed-valence copper cyanide complexes crystallizing as one- two- and three-dimensional self-assembled polymeric networks involving cyanide groups bridging copper atoms, see: Williams et al. (1972[Williams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858-864.]); Colacio et al. (2002[Colacio, E., Kivekas, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardaji, M. & Laguna, A. (2002). Inorg. Chem. 47, 5141-5149.]); Kim et al. (2005[Kim, D., Koo, J., Hong, C. S., Oh, S., & Do, Y. (2005). Inorg. Chem. 44, 4383-4390.]). For discrete molecules containing terminal cyanide groups which are not involved in any covalent polymeric linkages, see: Yuge et al. (1998[Yuge, H., Soma, T. & Miyamoto, T. K. (1998). Collect. Czech. Chem. Commun. 63, 622-627.]); Pickardt et al. (1999[Pickardt, J., Staub, B. & Schäfer, K. O. (1999). Z. Anorg. Allg. Chem. 625, 1217-1224.]); Pretsch et al. (2005[Pretsch, T., Ostmann, J., Donner, C., Nahorska, M., Mrozinski, J. & Hartl, H. (2005). Inorg. Chim. Acta, 358, 2558-2564.]). For the structure of a related one-dimensional polymer, see: Corfield & Yang (2012[Corfield, P. W. R. & Yang, S. C. (2012). Acta Cryst. E68, m872-m873.]). For cyanide analysis, see: Cooper & Plane (1966[Cooper, D. & Plane, R. A. (1966). Inorg. Chem. 5, 1677-1682.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)3(C6H18N4)]

  • Mr = 351.38

  • Triclinic, [P \overline 1]

  • a = 7.363 (3) Å

  • b = 8.741 (6) Å

  • c = 11.492 (6) Å

  • [alpha] = 77.84 (3)°

  • [beta] = 73.78 (3)°

  • [gamma] = 83.18 (3)°

  • V = 692.8 (7) Å3

  • Z = 2

  • Cu K[alpha] radiation

  • [mu] = 3.75 mm-1

  • T = 295 K

  • 0.7 × 0.2 × 0.1 mm

Data collection
  • GE 1/4 circle manual diffractometer

  • Absorption correction: integration (Busing & Levy, 1957[Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.]) Tmin = 0.515, Tmax = 0.746

  • 2734 measured reflections

  • 2060 independent reflections

  • 1975 reflections with I > 2[sigma](I)

  • Rint = 0.042

  • [theta]max = 60.0°

  • 3 standard reflections every 22 reflections intensity decay: 0.2 (2)%

Refinement
  • R[F2 > 2[sigma](F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.16

  • 2060 reflections

  • 163 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.51 e Å-3

  • [Delta][rho]min = -0.56 e Å-3

Table 1
Selected bond lengths (Å)

Cu1-C1 1.947 (4)
Cu1-C2 1.925 (4)
Cu1-C3 1.948 (5)
Cu2-N1 2.127 (4)
Cu2-N4 2.045 (4)
Cu2-N7 2.034 (4)
Cu2-N10 2.047 (4)
Cu2-N13 2.028 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N7-H7...N2i 0.91 2.14 2.984 (6) 154
N10-H10...N3ii 0.91 2.28 3.178 (6) 171
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: locally modified program (Corfield, 1984[Corfield, P. W. R. (1984). Local versions of standard programs, written at The King's College.]); cell refinements and data reduction followed procedures described by Corfield et al. (1973[Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734-1740.]); data were averaged with SORTAV (Blessing, 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]); program(s) used to solve structure: locally modified program (Corfield, 1984[Corfield, P. W. R. (1984). Local versions of standard programs, written at The King's College.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5552 ).


Acknowledgements

We thank Linda Kuzcko, Ruth Josenhans, John Oskam, and Mary Lou Eckels for their assistance in this work. We also acknowledge gratefully an Atlantic Richfield Foundation grant from the Research Corporation, and funding from the Alumni Association of The King's College, where the experimental work was carried out.

References

Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.  [CrossRef] [details]
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.  [CrossRef] [details]
Colacio, E., Kivekas, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardaji, M. & Laguna, A. (2002). Inorg. Chem. 47, 5141-5149.  [ISI] [CSD] [CrossRef]
Cooper, D. & Plane, R. A. (1966). Inorg. Chem. 5, 1677-1682.  [CrossRef] [ChemPort] [ISI]
Corfield, P. W. R. (1984). Local versions of standard programs, written at The King's College.
Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734-1740.  [CrossRef] [ChemPort] [ISI]
Corfield, P. W. R. & Yang, S. C. (2012). Acta Cryst. E68, m872-m873.  [CSD] [CrossRef] [details]
Kim, D., Koo, J., Hong, C. S., Oh, S., & Do, Y. (2005). Inorg. Chem. 44, 4383-4390.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.  [CrossRef] [ChemPort] [ISI] [details]
Pickardt, J., Staub, B. & Schäfer, K. O. (1999). Z. Anorg. Allg. Chem. 625, 1217-1224.  [CrossRef] [ChemPort]
Pretsch, T., Ostmann, J., Donner, C., Nahorska, M., Mrozinski, J. & Hartl, H. (2005). Inorg. Chim. Acta, 358, 2558-2564.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Williams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858-864.  [CrossRef] [ChemPort] [details]
Yuge, H., Soma, T. & Miyamoto, T. K. (1998). Collect. Czech. Chem. Commun. 63, 622-627.  [ISI] [CrossRef] [ChemPort]


Acta Cryst (2012). E68, m1532-m1533   [ doi:10.1107/S1600536812047745 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.