organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Meth­­oxy-2H-chromene-3-carbaldehyde

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 14 November 2012; accepted 17 November 2012; online 24 November 2012)

In the title mol­ecule, C11H10O3, the fused dihydro­pyran ring is in a half-chair conformation with the O atom and the methyl­ene C atom positioned 0.1318 (13) and 0.143 (2) Å, respectively, on either side of the mean plane formed by the other four atoms. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules along [001].

Related literature

For the synthesis and biological properties of chromene derivatives, see: Mun et al. (2012[Mun, J., Jabbar, A. A., Devi, N. S., Liu, Y., Meir, E. G. V. & Goodman, M. M. (2012). Bioorg. Med. Chem. Lett. 20, 4590-4597.]); Kallikat et al. (2011[Kallikat, A. J., Agnes, B., Nath, A. R. & Atta, R. (2011). Synlett, 15, 2223-2227.]); Zhang et al. (2009[Zhang, J.-M., Lou, C.-L., Hu, Z.-P. & Yan, M. (2009). ARKIVOC, 14, 362-375.]); Gebhardt et al. (2007[Gebhardt, P., Dornberger, K., Gollmick, F. A., Grafe, U., Hartl, A., Gorls, H., Schlegela, B. & Hertweck, C. (2007). Bioorg. Med. Chem. Lett. 17, 2558-2560.]); Yoon et al. (2012[Yoon, H., Ahn, S., Hwang, D., Jo, G., Kim, D., Kim, S. H., Koh, D. & Lim, Y. (2012). Magn. Reson. Chem. 50, 759-764.]). For the chromene group in natural products, see: Escandón-Rivera et al. (2012[Escandón-Rivera, S., González-Andrade, M., Bye, R., Linares, E., Navarrete, A. & Mata, R. (2012). J. Nat. Prod. 75, 968-974.]); Chen et al. (2008[Chen, J.-J., Wang, T.-Y. & Hwang, T.-L. (2008). J. Nat. Prod. 71, 212-217.]). For related structures, see: Yusufzai et al. (2012[Yusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416-o2417.]); Betz et al. (2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.]); Bardajee et al. (2007[Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2007). Acta Cryst. E63, o1269-o1270.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O3

  • Mr = 190.19

  • Orthorhombic, P b c a

  • a = 6.8940 (6) Å

  • b = 13.2079 (11) Å

  • c = 20.0964 (16) Å

  • V = 1829.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 12690 measured reflections

  • 2276 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 0.92

  • 2276 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1i 0.98 2.49 3.340 (3) 145
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chromenes have been important heterocyclic components in biologically active pharmaceuticals which show anti-inflammatory (Gebhardt et al. 2007) and anticancer (Mun et al., 2012) activities. The 2H-chromene skeleton is a core structure of oxygen heterocycles in many natural products having biological activities (Escandón-Rivera et al., 2012; Chen et al., 2008). In a continuation of our research interest to develop novel chalcone derivatives containing heterocycles (Yoon et al., 2012) the crystal structure of the title compound was determined.

The molecular structure of the title compound is shown in Fig. 1. The fused dihydropyran ring is in a half-chair conformation with atoms O2 and C3 positioned 0.1318 (13) and 0.143 (2)Å respectively, either side of the mean plane of the other four atoms (C2/C4/C10/C11). In the crystal, weak C—H···O hydrogen bonds link molecules along [001] (Fig. 2). Examples of structures of chromene compounds have been published (Yusufzai et al., 2012; Betz et al., 2011; Bardajee et al., 2007).

Related literature top

For the synthesis and biological properties of chromene derivatives, see: Mun et al. (2012); Kallikat et al. (2011); Zhang et al. (2009); Gebhardt et al. (2007); Yoon et al. (2012). For the chromene group in natural products, see: Escandón-Rivera et al. (2012); Chen et al. (2008). For related structures, see: Yusufzai et al. (2012); Betz et al. (2011); Bardajee et al. (2007).

Experimental top

To a solution of 2-hydroxy-3-methoxy-benzaldehyde (1.52 g, 10 mmol) in 20 ml of 1,4-dioxane was added excess amount of acrolein (840 mg, 15 mmol) and potassium carbonate (1.4 g, 10 mmol) at room temperature. The reaction mixture was refluxed for 8 h and TLC showed no starting material of 2-hydroxy-3-methoxy-benzaldehyde. After cooling to room temperature, the mixture was poured into iced water (40 ml) and extracted with diethylether (3 × 30 ml) and combined organic layers were dried under MgSO4. Filtration, evaporation of filtrate gave residue which was purified by flash chromatography to give the title compound (1.21 g, 82%). Recrystallization of a solution of the title compound in ethanol gave pale yellow crystals (mp: 352-353K).

Refinement top

The H atoms were placed in calculated positions and refined as riding with C–H = 0.95 A [Uiso(H) = 1.2 Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with weak intermolecular C—H···O hydrogen bonds shown as dashed lines.
8-Methoxy-2H-chromene-3-carbaldehyde top
Crystal data top
C11H10O3F(000) = 800
Mr = 190.19Dx = 1.381 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3190 reflections
a = 6.8940 (6) Åθ = 3.1–28.2°
b = 13.2079 (11) ŵ = 0.10 mm1
c = 20.0964 (16) ÅT = 200 K
V = 1829.9 (3) Å3Block, pale yellow
Z = 80.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
1194 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 99
12690 measured reflectionsk = 1716
2276 independent reflectionsl = 2619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0862P)2]
where P = (Fo2 + 2Fc2)/3
2276 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H10O3V = 1829.9 (3) Å3
Mr = 190.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.8940 (6) ŵ = 0.10 mm1
b = 13.2079 (11) ÅT = 200 K
c = 20.0964 (16) Å0.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD
diffractometer
1194 reflections with I > 2σ(I)
12690 measured reflectionsRint = 0.056
2276 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 0.92Δρmax = 0.28 e Å3
2276 reflectionsΔρmin = 0.28 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1026 (2)0.40157 (12)0.04444 (7)0.0583 (5)
C10.1052 (3)0.47227 (17)0.08309 (9)0.0456 (5)
H10.10130.53870.06510.055*
C20.1139 (2)0.46201 (14)0.15445 (8)0.0351 (4)
C30.1208 (3)0.35793 (14)0.18379 (8)0.0381 (5)
H3A0.02570.31480.16010.046*
H3B0.25120.32910.17570.046*
O20.08111 (19)0.35301 (9)0.25332 (6)0.0438 (4)
C40.1089 (2)0.43707 (13)0.29215 (8)0.0318 (4)
C50.1082 (2)0.42242 (14)0.36068 (9)0.0340 (4)
O30.09121 (18)0.32461 (10)0.38224 (6)0.0450 (4)
C60.0786 (3)0.30827 (18)0.45209 (9)0.0530 (6)
H6A0.19800.33200.47350.080*
H6B0.06160.23580.46090.080*
H6C0.03240.34580.47000.080*
C70.1241 (2)0.50626 (15)0.40230 (9)0.0394 (5)
H70.12400.49740.44920.047*
C80.1403 (3)0.60283 (15)0.37558 (9)0.0449 (5)
H80.14960.65970.40430.054*
C90.1428 (3)0.61667 (15)0.30801 (9)0.0400 (5)
H90.15650.68290.29020.048*
C100.1255 (2)0.53375 (13)0.26518 (8)0.0325 (4)
C110.1184 (2)0.54390 (14)0.19384 (9)0.0351 (4)
H110.11700.60950.17450.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0741 (11)0.0674 (11)0.0334 (8)0.0080 (8)0.0032 (7)0.0087 (7)
C10.0500 (12)0.0538 (14)0.0330 (11)0.0056 (9)0.0001 (9)0.0023 (9)
C20.0338 (10)0.0450 (12)0.0266 (10)0.0007 (8)0.0004 (7)0.0008 (8)
C30.0505 (12)0.0364 (11)0.0274 (10)0.0032 (8)0.0029 (8)0.0036 (7)
O20.0709 (10)0.0331 (8)0.0275 (7)0.0052 (6)0.0046 (6)0.0021 (5)
C40.0335 (10)0.0324 (10)0.0294 (10)0.0004 (7)0.0009 (7)0.0034 (7)
C50.0367 (10)0.0368 (11)0.0285 (10)0.0030 (8)0.0018 (7)0.0038 (7)
O30.0620 (9)0.0394 (8)0.0335 (8)0.0043 (6)0.0047 (6)0.0069 (6)
C60.0680 (14)0.0563 (14)0.0347 (11)0.0109 (11)0.0086 (9)0.0144 (9)
C70.0438 (11)0.0480 (12)0.0264 (9)0.0043 (9)0.0004 (7)0.0029 (8)
C80.0536 (12)0.0419 (12)0.0392 (11)0.0009 (9)0.0001 (9)0.0124 (9)
C90.0501 (12)0.0333 (11)0.0365 (10)0.0001 (8)0.0021 (8)0.0017 (8)
C100.0313 (9)0.0359 (11)0.0304 (10)0.0011 (7)0.0012 (7)0.0011 (7)
C110.0379 (10)0.0359 (11)0.0315 (10)0.0001 (8)0.0004 (7)0.0058 (7)
Geometric parameters (Å, º) top
O1—C11.215 (2)O3—C61.423 (2)
C1—C21.442 (2)C6—H6A0.9800
C1—H10.9500C6—H6B0.9800
C2—C111.341 (3)C6—H6C0.9800
C2—C31.497 (3)C7—C81.388 (3)
C3—O21.425 (2)C7—H70.9500
C3—H3A0.9900C8—C91.370 (2)
C3—H3B0.9900C8—H80.9500
O2—C41.370 (2)C9—C101.398 (2)
C4—C51.391 (2)C9—H90.9500
C4—C101.392 (2)C10—C111.441 (2)
C5—O31.368 (2)C11—H110.9500
C5—C71.392 (3)
O1—C1—C2124.4 (2)O3—C6—H6B109.5
O1—C1—H1117.8H6A—C6—H6B109.5
C2—C1—H1117.8O3—C6—H6C109.5
C11—C2—C1120.83 (18)H6A—C6—H6C109.5
C11—C2—C3120.50 (16)H6B—C6—H6C109.5
C1—C2—C3118.66 (16)C8—C7—C5120.32 (17)
O2—C3—C2114.96 (14)C8—C7—H7119.8
O2—C3—H3A108.5C5—C7—H7119.8
C2—C3—H3A108.5C9—C8—C7120.46 (18)
O2—C3—H3B108.5C9—C8—H8119.8
C2—C3—H3B108.5C7—C8—H8119.8
H3A—C3—H3B107.5C8—C9—C10120.29 (18)
C4—O2—C3119.63 (13)C8—C9—H9119.9
O2—C4—C5116.79 (16)C10—C9—H9119.9
O2—C4—C10122.21 (16)C4—C10—C9119.08 (17)
C5—C4—C10120.89 (16)C4—C10—C11118.04 (16)
O3—C5—C4116.44 (16)C9—C10—C11122.86 (17)
O3—C5—C7124.61 (16)C2—C11—C10120.88 (17)
C4—C5—C7118.95 (17)C2—C11—H11119.6
C5—O3—C6117.45 (15)C10—C11—H11119.6
O3—C6—H6A109.5
O1—C1—C2—C11179.25 (18)C4—C5—C7—C80.1 (2)
O1—C1—C2—C30.2 (3)C5—C7—C8—C90.7 (3)
C11—C2—C3—O215.8 (2)C7—C8—C9—C101.2 (3)
C1—C2—C3—O2165.19 (15)O2—C4—C10—C9176.48 (15)
C2—C3—O2—C423.3 (2)C5—C4—C10—C90.4 (2)
C3—O2—C4—C5166.65 (15)O2—C4—C10—C111.8 (2)
C3—O2—C4—C1017.1 (2)C5—C4—C10—C11177.88 (14)
O2—C4—C5—O33.7 (2)C8—C9—C10—C41.1 (3)
C10—C4—C5—O3179.99 (15)C8—C9—C10—C11177.14 (16)
O2—C4—C5—C7176.19 (15)C1—C2—C11—C10179.49 (15)
C10—C4—C5—C70.1 (2)C3—C2—C11—C101.5 (2)
C4—C5—O3—C6176.38 (15)C4—C10—C11—C26.0 (2)
C7—C5—O3—C63.5 (2)C9—C10—C11—C2175.80 (17)
O3—C5—C7—C8179.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.982.493.340 (3)145
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10O3
Mr190.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)6.8940 (6), 13.2079 (11), 20.0964 (16)
V3)1829.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12690, 2276, 1194
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 0.92
No. of reflections2276
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.982.493.340 (3)145.1
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationBardajee, G. R., Winnik, M. A. & Lough, A. J. (2007). Acta Cryst. E63, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals
First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1151.  Web of Science CSD CrossRef IUCr Journals
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, J.-J., Wang, T.-Y. & Hwang, T.-L. (2008). J. Nat. Prod. 71, 212–217.  Web of Science CrossRef PubMed CAS
First citationEscandón-Rivera, S., González-Andrade, M., Bye, R., Linares, E., Navarrete, A. & Mata, R. (2012). J. Nat. Prod. 75, 968–974.  Web of Science PubMed
First citationGebhardt, P., Dornberger, K., Gollmick, F. A., Grafe, U., Hartl, A., Gorls, H., Schlegela, B. & Hertweck, C. (2007). Bioorg. Med. Chem. Lett. 17, 2558–2560.  Web of Science CSD CrossRef PubMed CAS
First citationKallikat, A. J., Agnes, B., Nath, A. R. & Atta, R. (2011). Synlett, 15, 2223–2227.
First citationMun, J., Jabbar, A. A., Devi, N. S., Liu, Y., Meir, E. G. V. & Goodman, M. M. (2012). Bioorg. Med. Chem. Lett. 20, 4590–4597.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationYoon, H., Ahn, S., Hwang, D., Jo, G., Kim, D., Kim, S. H., Koh, D. & Lim, Y. (2012). Magn. Reson. Chem. 50, 759–764.  Web of Science CrossRef CAS PubMed
First citationYusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416–o2417.  CSD CrossRef CAS IUCr Journals
First citationZhang, J.-M., Lou, C.-L., Hu, Z.-P. & Yan, M. (2009). ARKIVOC, 14, 362–375.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds