organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(naphthalen-1-yl)phosphane chloro­form hemisolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 15 November 2012; accepted 24 November 2012; online 30 November 2012)

The title compound, P(C10H7)3·0.5CHCl3, was isolated after the unsuccessful reaction of KSeCN and tris­(naphthalen-1-yl)phosphane. The solvent mol­ecule is disordered about an inversion center. The effective cone angle of the phosphine is 203°. In the crystal, weak C—H⋯Cl and C—H⋯π inter­actions are observed.

Related literature

For background to the investigation of the steric and electronic properties of phospho­rus-containing ligands, see: Otto & Roodt (2004[Otto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1-10.]); Cowley & Damasco (1971[Cowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815-6821.]); Allen & Taylor (1982[Allen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51-54.]); Allen et al. (1985[Allen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505-2508.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C30H21P·0.5CHCl3

  • Mr = 472.12

  • Monoclinic, P 21 /c

  • a = 9.197 (3) Å

  • b = 14.564 (5) Å

  • c = 18.675 (5) Å

  • β = 107.061 (14)°

  • V = 2391.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.3 mm−1

  • T = 100 K

  • 0.3 × 0.07 × 0.07 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.979

  • 23695 measured reflections

  • 5950 independent reflections

  • 3713 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.194

  • S = 1.02

  • 5950 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C12–C17, C25–C30 and C1/C2/C7–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.93 2.82 3.512 (4) 132
C18—H18⋯Cg1ii 0.93 2.66 3.579 (3) 170
C24—H24⋯Cg2iii 0.93 2.51 3.425 (3) 167
C27—H27⋯Cg2iv 0.93 2.69 3.612 (3) 170
C8—H8⋯Cg3v 0.93 2.79 3.580 (3) 143
C31—H31⋯Cg4vi 0.98 2.65 3.618 (6) 172
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Several techniques to rapidly evaluate steric and electronic properties of phoshane ligands have been developed over the past few decades. Highlights from these studies include the measuring of IR stretching frequencies in complexes such as [NiP(CO)3] (Tolman, 1977), trans-[RhCl(CO)(P)2] (Otto & Roodt, 2004) and by the measuring of coupling constants between 31P and other NMR active nuclei such as 11B, 195Pt or 77Se (Cowley & Damasco, 1971; Allen & Taylor, 1982; Allen et al., 1985). In our research into these properties we make use of seledized phosphane ligands, providing useful probes such as 1J(31P-77Se) coupling, Se—P bond distance and kinetic reaction rates (Muller et al., 2008). The title compound (Fig. 1) in the present study was obtained during an unsuccessful reaction between KSeCN and tris(naphthalen-1-yl)phoshane in MeOH:CHCl3 (1:1).

The molecular structure of the title compound is shown in Fig. 1. The chloroform solvent molecule is disordered across an inversion center. The average P–C distance and C–P–C angle are 1.837 (3) Å and 102.43 (12)°, respectively. To describe the steric demand of the phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound with a dummy atom positioned at a distance of 2.28 Å from the P-atom, we calculated an effective cone angle (Otto, 2001) of 203°. This large value may account for the unreactiveness of the phosphorus centre with selenium.

Packing in the crystals is assisted by weak C—H···Cl and C—H···π interactions (see table 1 and Fig. 2 for a graphical representation of these interactions).

Related literature top

For background to the investigation of the steric and electronic properties of phosphorus-containing ligands, see: Otto & Roodt (2004); Cowley & Damasco (1971); Allen & Taylor (1982); Allen et al. (1985); Muller et al. (2008). For background to cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Tris(naphthalen-1-yl)phosphane and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and tris(naphthalen-1-yl)phosphane (16.5 mg, 0.04 mmol) were dissolved in the minimum amount of methanol (5 ml) and chloroform (5 ml), respectively. The KSeCN solution was added drop wise (5 min.) to the phosphane solution with stirring at room temperature (1hr.). Slow evaporation of the solvent afforded the title compound as colourless needles suitable for a single-crystal X-ray study. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ = -33.15 (s, 1P)

Refinement top

The aromatic and methine H atoms were placed in geometrically idealized positions (C—H = 0.93 and 0.98) Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The chloroform solvate molecule is disordered across an inversion centre, H atom connectivity was correctly assigned by using a PART -1 instruction in SHELXL-97 (Sheldrick, 2008). Occupancies of each disordered component were constrained to 50% conforming to the imposed crystallographic symmetry. No additional geometrical or thermal ellipsoid restrains were employed in the final refinement cycles.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing 50% probability displacement ellipsoids. The chloroform solvent molecule is half occupancy.
[Figure 2] Fig. 2. Packing diagram showing the C—H···Cl/π interactions (indicated by red dashed lines).
Tris(naphthalen-1-yl)phosphane chloroform hemisolvate top
Crystal data top
C30H21P·0.5CHCl3F(000) = 980
Mr = 472.12Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2813 reflections
a = 9.197 (3) Åθ = 2.3–24.3°
b = 14.564 (5) ŵ = 0.3 mm1
c = 18.675 (5) ÅT = 100 K
β = 107.061 (14)°Needle, colourless
V = 2391.3 (13) Å30.3 × 0.07 × 0.07 mm
Z = 4
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
5950 independent reflections
Radiation source: sealed tube3713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1819
Tmin = 0.916, Tmax = 0.979l = 2424
23695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1042P)2 + 0.0263P]
where P = (Fo2 + 2Fc2)/3
5950 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C30H21P·0.5CHCl3V = 2391.3 (13) Å3
Mr = 472.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.197 (3) ŵ = 0.3 mm1
b = 14.564 (5) ÅT = 100 K
c = 18.675 (5) Å0.3 × 0.07 × 0.07 mm
β = 107.061 (14)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
5950 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3713 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.979Rint = 0.107
23695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.02Δρmax = 0.87 e Å3
5950 reflectionsΔρmin = 0.57 e Å3
316 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 120 s/frame. A total of 1041 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 99.2% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.73007 (7)0.85270 (5)0.62816 (4)0.02204 (18)
C10.6589 (3)0.80104 (19)0.53493 (14)0.0251 (5)
C20.7611 (3)0.74531 (18)0.50785 (15)0.0269 (6)
C30.9148 (3)0.72986 (19)0.54983 (15)0.0277 (6)
H30.95340.75780.59630.033*
C41.0071 (4)0.6744 (2)0.52300 (17)0.0373 (7)
H41.10690.6640.55180.045*
C50.9517 (5)0.6332 (2)0.4522 (2)0.0502 (9)
H51.01490.59560.43430.06*
C60.8055 (4)0.6484 (2)0.40970 (18)0.0474 (9)
H60.77080.62160.36250.057*
C70.7056 (4)0.7039 (2)0.43570 (16)0.0353 (7)
C80.5525 (4)0.7185 (2)0.39308 (17)0.0439 (8)
H80.51660.69250.34570.053*
C90.4568 (4)0.7699 (2)0.42033 (18)0.0427 (8)
H90.35590.77750.39210.051*
C100.5105 (3)0.8114 (2)0.49096 (17)0.0354 (7)
H100.44430.84690.50860.042*
C110.8153 (3)0.95984 (18)0.60744 (15)0.0243 (5)
C120.9083 (3)1.01264 (17)0.66864 (15)0.0237 (5)
C130.9367 (3)0.98622 (19)0.74493 (15)0.0265 (6)
H130.89140.93340.75650.032*
C141.0293 (3)1.0370 (2)0.80119 (16)0.0312 (6)
H141.04761.01810.85060.037*
C151.0980 (3)1.1185 (2)0.78521 (17)0.0325 (6)
H151.16081.15290.8240.039*
C161.0719 (3)1.14612 (19)0.71339 (16)0.0302 (6)
H161.11681.20.70350.036*
C170.9776 (3)1.09469 (18)0.65280 (16)0.0262 (6)
C180.9538 (3)1.12187 (19)0.57754 (17)0.0316 (6)
H180.9991.17540.56720.038*
C190.8659 (3)1.0710 (2)0.52010 (16)0.0307 (6)
H190.85161.08950.47090.037*
C200.7961 (3)0.98966 (19)0.53533 (16)0.0281 (6)
H200.73570.95550.49560.034*
C210.5560 (3)0.89395 (18)0.64718 (14)0.0238 (5)
C220.5185 (3)0.98566 (19)0.64516 (15)0.0270 (6)
H220.57781.0280.62890.032*
C230.3931 (3)1.01723 (19)0.66694 (15)0.0293 (6)
H230.37051.07960.66470.035*
C240.3042 (3)0.9567 (2)0.69129 (15)0.0269 (6)
H240.22240.97830.70610.032*
C250.3358 (3)0.86131 (19)0.69407 (14)0.0248 (5)
C260.2434 (3)0.7973 (2)0.71761 (15)0.0302 (6)
H260.16040.81830.73180.036*
C270.2735 (3)0.7053 (2)0.71984 (16)0.0344 (7)
H270.2120.66420.73570.041*
C280.3985 (3)0.6730 (2)0.69789 (17)0.0345 (7)
H280.41860.61030.6990.041*
C290.4911 (3)0.73308 (19)0.67483 (16)0.0297 (6)
H290.57350.71050.6610.036*
C300.4632 (3)0.82826 (18)0.67181 (15)0.0248 (6)
Cl10.68271 (18)0.46375 (16)0.50033 (11)0.0583 (5)0.5
Cl20.3885 (2)0.49626 (13)0.39948 (12)0.0646 (6)0.5
Cl30.4575 (3)0.55581 (16)0.55292 (13)0.0727 (6)0.5
C310.4885 (7)0.4716 (4)0.4923 (4)0.0397 (14)0.5
H310.45380.41230.50590.048*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0227 (3)0.0153 (3)0.0283 (4)0.0009 (2)0.0078 (3)0.0026 (3)
C10.0304 (13)0.0181 (13)0.0257 (13)0.0033 (10)0.0064 (11)0.0056 (11)
C20.0379 (14)0.0167 (13)0.0263 (14)0.0059 (11)0.0100 (12)0.0026 (11)
C30.0392 (14)0.0205 (14)0.0267 (14)0.0006 (11)0.0149 (12)0.0035 (11)
C40.0479 (17)0.0290 (16)0.0412 (17)0.0038 (13)0.0229 (14)0.0015 (14)
C50.080 (3)0.0308 (19)0.055 (2)0.0040 (16)0.042 (2)0.0103 (16)
C60.078 (2)0.0366 (19)0.0331 (17)0.0182 (17)0.0254 (17)0.0112 (15)
C70.0557 (18)0.0221 (15)0.0292 (15)0.0128 (13)0.0143 (14)0.0002 (12)
C80.061 (2)0.0358 (19)0.0274 (16)0.0208 (15)0.0018 (15)0.0008 (14)
C90.0409 (16)0.041 (2)0.0363 (17)0.0134 (14)0.0040 (14)0.0095 (15)
C100.0340 (14)0.0288 (17)0.0368 (16)0.0055 (12)0.0002 (13)0.0099 (13)
C110.0214 (11)0.0177 (13)0.0351 (15)0.0024 (9)0.0102 (11)0.0032 (11)
C120.0231 (11)0.0154 (12)0.0354 (15)0.0014 (9)0.0129 (11)0.0014 (11)
C130.0302 (13)0.0179 (13)0.0351 (15)0.0013 (10)0.0153 (12)0.0001 (11)
C140.0419 (15)0.0260 (15)0.0305 (15)0.0044 (12)0.0180 (13)0.0054 (12)
C150.0361 (14)0.0226 (15)0.0427 (17)0.0059 (11)0.0178 (13)0.0103 (13)
C160.0338 (13)0.0159 (13)0.0458 (17)0.0035 (10)0.0196 (13)0.0045 (12)
C170.0265 (12)0.0151 (13)0.0402 (16)0.0015 (10)0.0149 (11)0.0007 (11)
C180.0345 (14)0.0175 (14)0.0468 (17)0.0016 (10)0.0181 (13)0.0070 (12)
C190.0337 (14)0.0243 (15)0.0349 (16)0.0014 (11)0.0115 (12)0.0108 (12)
C200.0278 (13)0.0205 (14)0.0356 (15)0.0008 (10)0.0088 (12)0.0027 (12)
C210.0217 (11)0.0187 (13)0.0306 (14)0.0016 (9)0.0071 (11)0.0045 (11)
C220.0256 (12)0.0181 (13)0.0375 (16)0.0014 (10)0.0098 (12)0.0068 (11)
C230.0306 (14)0.0201 (14)0.0362 (16)0.0056 (11)0.0081 (12)0.0019 (12)
C240.0222 (12)0.0290 (15)0.0291 (14)0.0048 (10)0.0068 (11)0.0019 (12)
C250.0204 (11)0.0268 (14)0.0252 (13)0.0000 (10)0.0036 (10)0.0039 (11)
C260.0220 (12)0.0346 (16)0.0323 (15)0.0031 (11)0.0053 (11)0.0049 (13)
C270.0294 (13)0.0329 (16)0.0393 (17)0.0092 (12)0.0075 (12)0.0091 (13)
C280.0334 (14)0.0202 (14)0.0476 (18)0.0021 (11)0.0081 (13)0.0086 (13)
C290.0275 (13)0.0212 (14)0.0410 (17)0.0033 (10)0.0110 (12)0.0095 (12)
C300.0246 (12)0.0206 (14)0.0286 (14)0.0009 (10)0.0069 (11)0.0038 (11)
Cl10.0349 (8)0.0726 (14)0.0590 (12)0.0079 (8)0.0009 (8)0.0100 (10)
Cl20.0631 (11)0.0349 (10)0.0680 (13)0.0079 (8)0.0239 (10)0.0142 (9)
Cl30.0889 (15)0.0602 (14)0.0794 (15)0.0005 (11)0.0409 (13)0.0266 (12)
C310.046 (3)0.026 (3)0.051 (4)0.009 (3)0.020 (3)0.008 (3)
Geometric parameters (Å, º) top
P1—C11.832 (3)C16—C171.420 (4)
P1—C111.838 (3)C16—H160.93
P1—C211.840 (2)C17—C181.414 (4)
C1—C101.379 (4)C18—C191.358 (4)
C1—C21.441 (4)C18—H180.93
C2—C31.419 (4)C19—C201.415 (4)
C2—C71.427 (4)C19—H190.93
C3—C41.369 (4)C20—H200.93
C3—H30.93C21—C221.377 (4)
C4—C51.404 (5)C21—C301.444 (3)
C4—H40.93C22—C231.408 (3)
C5—C61.364 (5)C22—H220.93
C5—H50.93C23—C241.368 (4)
C6—C71.413 (5)C23—H230.93
C6—H60.93C24—C251.417 (4)
C7—C81.415 (5)C24—H240.93
C8—C91.363 (5)C25—C261.416 (4)
C8—H80.93C25—C301.436 (3)
C9—C101.403 (4)C26—C271.367 (4)
C9—H90.93C26—H260.93
C10—H100.93C27—C281.410 (4)
C11—C201.376 (4)C27—H270.93
C11—C121.434 (4)C28—C291.375 (4)
C12—C131.424 (4)C28—H280.93
C12—C171.426 (4)C29—C301.408 (4)
C13—C141.360 (4)C29—H290.93
C13—H130.93Cl1—C311.752 (7)
C14—C151.416 (4)Cl2—C311.745 (8)
C14—H140.93Cl3—C311.748 (7)
C15—C161.353 (4)C31—H310.98
C15—H150.93
C1—P1—C11101.78 (12)C17—C16—H16119.3
C1—P1—C21103.24 (12)C18—C17—C16121.6 (2)
C11—P1—C21102.27 (12)C18—C17—C12119.5 (3)
C10—C1—C2119.1 (3)C16—C17—C12118.8 (2)
C10—C1—P1122.4 (2)C19—C18—C17121.0 (3)
C2—C1—P1118.48 (19)C19—C18—H18119.5
C3—C2—C7118.5 (3)C17—C18—H18119.5
C3—C2—C1122.8 (2)C18—C19—C20119.9 (3)
C7—C2—C1118.7 (2)C18—C19—H19120.1
C4—C3—C2121.0 (3)C20—C19—H19120.1
C4—C3—H3119.5C11—C20—C19121.7 (3)
C2—C3—H3119.5C11—C20—H20119.2
C3—C4—C5120.3 (3)C19—C20—H20119.2
C3—C4—H4119.9C22—C21—C30119.0 (2)
C5—C4—H4119.9C22—C21—P1122.43 (19)
C6—C5—C4120.1 (3)C30—C21—P1118.32 (19)
C6—C5—H5119.9C21—C22—C23121.9 (2)
C4—C5—H5119.9C21—C22—H22119.1
C5—C6—C7121.5 (3)C23—C22—H22119.1
C5—C6—H6119.3C24—C23—C22120.4 (3)
C7—C6—H6119.3C24—C23—H23119.8
C6—C7—C8122.2 (3)C22—C23—H23119.8
C6—C7—C2118.6 (3)C23—C24—C25120.5 (2)
C8—C7—C2119.3 (3)C23—C24—H24119.7
C9—C8—C7121.1 (3)C25—C24—H24119.7
C9—C8—H8119.4C26—C25—C24121.4 (2)
C7—C8—H8119.4C26—C25—C30119.0 (3)
C8—C9—C10120.0 (3)C24—C25—C30119.6 (2)
C8—C9—H9120C27—C26—C25121.3 (2)
C10—C9—H9120C27—C26—H26119.3
C1—C10—C9121.8 (3)C25—C26—H26119.3
C1—C10—H10119.1C26—C27—C28119.6 (3)
C9—C10—H10119.1C26—C27—H27120.2
C20—C11—C12119.1 (2)C28—C27—H27120.2
C20—C11—P1122.3 (2)C29—C28—C27120.7 (3)
C12—C11—P1118.63 (19)C29—C28—H28119.6
C13—C12—C17118.2 (2)C27—C28—H28119.6
C13—C12—C11123.0 (2)C28—C29—C30121.1 (2)
C17—C12—C11118.9 (2)C28—C29—H29119.4
C14—C13—C12121.0 (2)C30—C29—H29119.4
C14—C13—H13119.5C29—C30—C25118.2 (2)
C12—C13—H13119.5C29—C30—C21123.2 (2)
C13—C14—C15120.6 (3)C25—C30—C21118.6 (2)
C13—C14—H14119.7Cl2—C31—Cl3111.1 (4)
C15—C14—H14119.7Cl2—C31—Cl1109.0 (4)
C16—C15—C14119.9 (3)Cl3—C31—Cl1110.3 (3)
C16—C15—H15120.1Cl2—C31—H31108.8
C14—C15—H15120.1Cl3—C31—H31108.8
C15—C16—C17121.5 (3)Cl1—C31—H31108.8
C15—C16—H16119.3
C11—P1—C1—C1095.6 (2)C15—C16—C17—C18178.1 (3)
C21—P1—C1—C1010.2 (3)C15—C16—C17—C120.5 (4)
C11—P1—C1—C286.3 (2)C13—C12—C17—C18178.9 (2)
C21—P1—C1—C2167.9 (2)C11—C12—C17—C180.3 (3)
C10—C1—C2—C3179.1 (3)C13—C12—C17—C160.2 (3)
P1—C1—C2—C30.9 (3)C11—C12—C17—C16178.9 (2)
C10—C1—C2—C71.0 (4)C16—C17—C18—C19178.6 (2)
P1—C1—C2—C7179.2 (2)C12—C17—C18—C190.0 (4)
C7—C2—C3—C41.9 (4)C17—C18—C19—C200.3 (4)
C1—C2—C3—C4178.2 (3)C12—C11—C20—C190.0 (4)
C2—C3—C4—C51.4 (4)P1—C11—C20—C19178.18 (19)
C3—C4—C5—C60.1 (5)C18—C19—C20—C110.3 (4)
C4—C5—C6—C71.1 (5)C1—P1—C21—C22106.4 (2)
C5—C6—C7—C8178.4 (3)C11—P1—C21—C221.0 (3)
C5—C6—C7—C20.6 (5)C1—P1—C21—C3079.4 (2)
C3—C2—C7—C60.8 (4)C11—P1—C21—C30175.2 (2)
C1—C2—C7—C6179.2 (3)C30—C21—C22—C230.5 (4)
C3—C2—C7—C8179.9 (3)P1—C21—C22—C23173.6 (2)
C1—C2—C7—C80.2 (4)C21—C22—C23—C240.2 (4)
C6—C7—C8—C9177.9 (3)C22—C23—C24—C250.8 (4)
C2—C7—C8—C91.2 (4)C23—C24—C25—C26178.7 (2)
C7—C8—C9—C101.6 (5)C23—C24—C25—C300.6 (4)
C2—C1—C10—C90.6 (4)C24—C25—C26—C27179.6 (3)
P1—C1—C10—C9178.7 (2)C30—C25—C26—C270.3 (4)
C8—C9—C10—C10.7 (5)C25—C26—C27—C280.4 (4)
C1—P1—C11—C209.3 (2)C26—C27—C28—C290.5 (4)
C21—P1—C11—C2097.2 (2)C27—C28—C29—C300.6 (5)
C1—P1—C11—C12168.88 (18)C28—C29—C30—C250.5 (4)
C21—P1—C11—C1284.6 (2)C28—C29—C30—C21179.3 (3)
C20—C11—C12—C13178.8 (2)C26—C25—C30—C290.4 (4)
P1—C11—C12—C130.6 (3)C24—C25—C30—C29179.7 (3)
C20—C11—C12—C170.2 (3)C26—C25—C30—C21179.4 (2)
P1—C11—C12—C17178.53 (17)C24—C25—C30—C210.1 (4)
C17—C12—C13—C141.0 (4)C22—C21—C30—C29179.1 (3)
C11—C12—C13—C14178.1 (2)P1—C21—C30—C296.5 (4)
C12—C13—C14—C151.0 (4)C22—C21—C30—C250.6 (4)
C13—C14—C15—C160.2 (4)P1—C21—C30—C25173.73 (19)
C14—C15—C16—C170.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C12–C17, C25–C30 and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.932.823.512 (4)132
C18—H18···Cg1ii0.932.663.579 (3)170
C24—H24···Cg2iii0.932.513.425 (3)167
C27—H27···Cg2iv0.932.693.612 (3)170
C8—H8···Cg3v0.932.793.580 (3)143
C31—H31···Cg4vi0.982.653.618 (6)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z1/2; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H21P·0.5CHCl3
Mr472.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.197 (3), 14.564 (5), 18.675 (5)
β (°) 107.061 (14)
V3)2391.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.3
Crystal size (mm)0.3 × 0.07 × 0.07
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.916, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
23695, 5950, 3713
Rint0.107
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.194, 1.02
No. of reflections5950
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.57

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, C12–C17, C25–C30 and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.932.823.512 (4)131.6
C18—H18···Cg1ii0.932.663.579 (3)170
C24—H24···Cg2iii0.932.513.425 (3)167
C27—H27···Cg2iv0.932.693.612 (3)170
C8—H8···Cg3v0.932.793.580 (3)143
C31—H31···Cg4vi0.982.653.618 (6)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z1/2; (vi) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, D. W., Nowel, I. W. & Taylor, B. F. (1985). J. Chem. Soc. Dalton Trans. pp. 2505–2508.  CSD CrossRef Web of Science
First citationAllen, D. W. & Taylor, B. F. (1982). J. Chem. Soc. Dalton Trans. pp. 51–54.  CrossRef Web of Science
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCowley, A. H. & Damasco, M. C. (1971). J. Am. Chem. Soc. 93, 6815–6821.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals
First citationOtto, S. & Roodt, A. (2004). Inorg. Chim. Acta, 357, 1–10.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds