organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5,6-Di­phenyl-1,2,4-triazin-3-yl)aniline

aDepartment of Chemistry, Siedlce University, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bDepartment of General and Ecological Chemistry, Technical University, ul. Żeromskiego 115, 90-924 Łódź, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 6 September 2012; accepted 24 October 2012; online 3 November 2012)

The title compound, C21H16N4, obtained under standard Suzuki cross-coupling conditions, is a model compound in the synthesis and biological activity evaluation of new aza-analogues of sildenafil containing a pyrazolo­[4,3-e][1,2,4]triazine system. An N—H⋯N intra­molecular hydrogen bond involving the amino­benzene system and the 1,2,4-triazine moiety helps to establish a near coplanar orientation of the rings with a dihedral angle of 12.04 (4)°, which is believed to be necessary for the biological activity of sildenafil analogues. The 1,2,4-triazine ring is slightly distorted from planarity [r.m.s deviation = 0.0299 (11) Å] and forms dihedral angles of 58.60 (4) and 36.35 (3)° with the pendant phenyl rings. The crystal packing features bifurcated N—H⋯(N,N) hydrogen bonds linking screw-axis-related mol­ecules into chains parallel to the [010] direction and ππ inter­actions, with a centroid–centroid separation of 3.8722 (7) Å and a slippage of 1.412 (3) Å. The crystal studied was a nonmerohedral twin with a ratio of 0.707 (2):0293 (2).

Related literature

For background information on the activity of sildenafil citrate, see: Terrett et al. (1996[Terrett, N. K., Bell, A. S., Brown, D. & Ellis, P. (1996). Bioorg. Med. Chem. Lett. 6, 1819-1824.]); Card et al. (2004[Card, G. L., England, B. P., Suzuki, Y., Fong, D., Powell, B., Lee, B., Luu, C., Tabrizizad, M., Gillette, S., Ibrahim, P. N., Artis, D. R., Bollag, G., Milburn, M. V., Kim, S. H., Schlessinger, J. & Zhang, K. Y. (2004). Structure, 12, 2233-2247.]). For the synthesis of the title compound, see: Agarwal et al. (2010[Agarwal, P. K., Saifuddin, M. & Kundu, B. (2010). Tetrahedron, 66, 862-870.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N4

  • Mr = 324.38

  • Monoclinic, P 21 /c

  • a = 11.8797 (3) Å

  • b = 6.0788 (1) Å

  • c = 23.8710 (5) Å

  • β = 101.489 (1)°

  • V = 1689.29 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.21 × 0.14 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 1.000

  • 4591 measured reflections

  • 3173 independent reflections

  • 2837 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.05

  • 4591 reflections

  • 275 parameters

  • All H-atom parameters refined

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H72⋯N2 0.94 (2) 2.00 (2) 2.7037 (19) 130 (2)
N7—H71⋯N1i 0.93 (3) 2.26 (3) 3.1779 (19) 169 (2)
N7—H71⋯N2i 0.93 (3) 2.49 (2) 3.2677 (18) 141.3 (19)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Nowadays, sildenafil citrate (Viagra) is the first orally effective phosphodiesterase type 5 (PDE5) inhibitor available for the treatment of common and important medical problem e.g. male erectile dysfunction (MED) (Terrett et al., 1996). The earlier work on crystal structures of the catalytic domains of PDEs with different inhibitors have revealed two common features of inhibitor binding to PDEs: a planar ring structure of the inhibitor and hydrogen bond iteractions with an invariant glutamine residue (Card et al., 2004). With this in mind we have planned a new series of sildenafil analogues with pyrazolo[4,3-e][1,2,4]triazine system in which triazine ring nitrogen N1 plays a role of C=O group present in pyrimidinone moiety of sildenafil and ethylamino group in the position 2' of phenyl ring allowed to form intramolecular hydrogen bond between aminophenyl ring and pyrazolotriazine ring system. To clearly define the possibility and the place of intramolecular hydrogen bond formation in the new sildenafil analogues the synthesis and the crystal structure determination of an appropriate model 2-(5,6-diphenyl-1,2,4-triazin-3-yl)aniline, (I), were undertaken.

A search of the Cambridge Structural Database (CSD version 5.33, November 2011; Allen, 2002; Bruno et al., 2002) did not reveal any crystal structures containing the 3-(2-aminophenyl)-1,2,4-triazine structural unit. The structure of the molecule (I) is shown in Fig. 1. One can see that the 3-aminophenyl-1,2,4-triazine system exists in the crystal in the conformation with the torsion angle N2–C3–C31–C32 of -6.86 (17)°. This conformation is forced by the strong N7–H72···N2 intramolecular hydrogen bond (Table 1). The conformation of the 5- and 6-phenyl substituents of the 1,2,4-triazine system in relation to the triazine ring described by the torsion angles N4–C5–C51–C52 of -120.48 (13)° and N1–C6–C61–C62 of 35.44 (15)°, respectively, is forced by the steric effect of these bulky groups in adjacent positions of the heterocyclic system. This strong steric interaction causing the appearance of the strains in the triazine ring results in the distortion of its planarity with the displacements of the triazine atoms from the best plane within 0.0299 (11) Å.

In the crystal structure, the screw-related molecules are linked into chains along the [010] direction by bifurcated N7–H71···N1 and N7–H71···N2 intermolecular hydrogen bonds (Fig. 2) and the methine groups C53—H53 of the inversion-related molecules interact with π-electron system of the aminophenyl ring via C—H···π interaction (Table 1). Moreover, nearly coplanar mutual position of the triazine and aminophenyl rings is stabilized by the ππ interaction of these rings in the crystal structure. The π-electron systems of the pairs of triazine and aminophenyl rings belonging to the translation-related molecules overlap each other, with centroid-to-centroid separation of 3.8722 (7) Å between the triazine ring at (x, y, z) and aminophenyl ring at (x, -1 + y, z) and aminophenyl ring at (x, y, z) and triazine ring at (x, 1 + y, z). The ππ distances are 3.2886 (4) and 3.6055 (6) Å, respectively, the angle between overlapping planes is 12.13 (6)° and the slippage is 1.412 (3) Å.

In conclusion, the X-ray investigations of molecule (I) confirmed the assumed possibility of forming the N7–H···N2 intramolecular hydrogen bond stabilizing its cis conformation in the crystalline state, analogous to active conformation of sildenafil molecule.

Related literature top

For background information [on what?], see: Terrett et al. (1996); Card et al. (2004). For the synthesis of the title compound, see: Agarwal et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002); Bruno et al. (2002).

Experimental top

The title compound, (I), was obtained using standard Suzuki cross-coupling conditions (Agarwal et al., 2010), in the reaction of 3-bromo- and 3-chloro-5,6-diphenyl-1,2,4-triazine with 2-aminophenylboronic acid. To a solution of 3-halogeno-5,6-diphenyl-1,2,4-triazine (0.2 mmol) and 2-aminophenylboronic acid (0.22 mmol) in dioxane/water mixture (4:1) (2.5 ml) solution of K2CO3 (0.6 mmol) in 1 ml of water and Pd(PPh3)4 were added. The reaction mixture was stirred at 70°C for 12 h. After that time the solution was diluted with H2O (1.5 ml), and then the product was extracted three times with CH2Cl2 (3x2mL). The combined organic layer was dried over Na2SO4 and the solvent was removed in vacuo. The crude product was then subjected to column chromatography using CH2Cl2:hexane (4:1) as eluent. mp 161°C. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution.

Refinement top

The structure of (I) was refined as a nonmerohedral twin using 4591 reflections in the HKLF 5 file format and a BASF parameter of 0.70752 in SHELXL97 (Sheldrick, 2008). All H atoms were located from difference electron-density maps and their coordinates were refined with isotropic displacement parameters taken as 1.5 times those of the respective parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Dashed lines indicate N—H···N intermolecular hydrogen bond [symmetry code: (i) –x, y + 1/2, –z+1/2].
2-(5,6-Diphenyl-1,2,4-triazin-3-yl)aniline top
Crystal data top
C21H16N4F(000) = 680
Mr = 324.38Dx = 1.275 Mg m3
Monoclinic, P21/cMelting point: 434 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 11.8797 (3) ÅCell parameters from 241 reflections
b = 6.0788 (1) Åθ = 8.2–35.4°
c = 23.8710 (5) ŵ = 0.61 mm1
β = 101.489 (1)°T = 293 K
V = 1689.29 (6) Å3Prism, yellow
Z = 40.21 × 0.14 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
3173 independent reflections
Radiation source: fine-focus sealed tube2837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 69.9°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.906, Tmax = 1.000k = 07
4591 measured reflectionsl = 029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.103All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0858P]
where P = (Fo2 + 2Fc2)/3
4591 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C21H16N4V = 1689.29 (6) Å3
Mr = 324.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.8797 (3) ŵ = 0.61 mm1
b = 6.0788 (1) ÅT = 293 K
c = 23.8710 (5) Å0.21 × 0.14 × 0.01 mm
β = 101.489 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3173 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2837 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 1.000Rint = 0.000
4591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.05Δρmax = 0.10 e Å3
4591 reflectionsΔρmin = 0.13 e Å3
275 parameters
Special details top

Experimental. 1H-NMR (400 mHz, DMSO) δ: 6.85 (d, J = 7.2 Hz, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.35–7.45 (m, 6H), 7.60 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 8.61 (d, J = 8.0 Hz, 1H). 13C-NMR (100 MHz, DMSO) δ:167.68, 164.37, 162.95, 155.22, 153.98, 147.70, 135.91, 135.47, 132.71, 130.89, 130.77, 130.71, 129.82, 129.51, 129.36, 128.81, 128.61, 128.55, 117.98.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18725 (9)0.11023 (15)0.18454 (4)0.0576 (2)
N20.10666 (8)0.04609 (16)0.17863 (4)0.0597 (2)
N40.14421 (8)0.14537 (15)0.08844 (4)0.0526 (2)
N70.07122 (15)0.2512 (2)0.21174 (7)0.0864 (5)
H710.114 (2)0.294 (3)0.2383 (11)0.130*
H720.025 (2)0.125 (4)0.2158 (10)0.130*
C30.08941 (9)0.1743 (2)0.13234 (4)0.0514 (2)
C50.21940 (9)0.01610 (17)0.09270 (4)0.0492 (2)
C60.24565 (9)0.14379 (17)0.14325 (4)0.0500 (2)
C310.00852 (9)0.35952 (19)0.12884 (5)0.0547 (3)
C320.06168 (10)0.3956 (2)0.16965 (5)0.0637 (3)
C330.12606 (12)0.5930 (3)0.16472 (6)0.0777 (4)
H330.1748 (17)0.619 (3)0.1937 (8)0.117*
C340.12449 (16)0.7395 (2)0.12196 (9)0.0822 (5)
H340.1621 (18)0.878 (4)0.1199 (9)0.123*
C350.06099 (14)0.6990 (3)0.07991 (8)0.0766 (4)
H350.0576 (19)0.808 (3)0.0485 (10)0.115*
C360.00405 (11)0.5109 (2)0.08408 (6)0.0641 (3)
H360.0494 (15)0.481 (3)0.0544 (7)0.096*
C510.27044 (9)0.05244 (18)0.04130 (4)0.0511 (2)
C520.25810 (15)0.25262 (19)0.01303 (7)0.0654 (4)
H520.2176 (15)0.371 (3)0.0296 (8)0.098*
C530.30015 (16)0.2788 (3)0.03670 (7)0.0752 (4)
H530.2884 (17)0.418 (3)0.0560 (8)0.113*
C540.35701 (13)0.1102 (3)0.05686 (5)0.0746 (4)
H540.3858 (16)0.127 (3)0.0913 (8)0.112*
C550.37091 (12)0.0887 (3)0.02854 (6)0.0714 (4)
H550.412 (2)0.210 (3)0.0428 (10)0.107*
C560.32644 (11)0.1187 (2)0.02024 (5)0.0606 (3)
H560.3355 (18)0.266 (2)0.0396 (9)0.091*
C610.33740 (11)0.3132 (2)0.15615 (5)0.0551 (3)
C620.32080 (13)0.4980 (2)0.18810 (5)0.0687 (3)
H620.2476 (16)0.510 (3)0.2016 (8)0.103*
C630.40801 (19)0.6518 (2)0.20237 (6)0.0890 (5)
H630.393 (2)0.782 (3)0.2224 (12)0.133*
C640.51152 (18)0.6245 (3)0.18542 (7)0.0932 (5)
H640.575 (3)0.733 (3)0.1959 (13)0.140*
C650.52850 (15)0.4423 (3)0.15449 (6)0.0865 (5)
H650.6019 (19)0.420 (3)0.1395 (9)0.130*
C660.44224 (14)0.2872 (3)0.13971 (6)0.0682 (3)
H660.4576 (16)0.156 (3)0.1189 (8)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0658 (6)0.0613 (5)0.0496 (5)0.0045 (4)0.0205 (4)0.0065 (4)
N20.0642 (6)0.0681 (6)0.0514 (5)0.0073 (5)0.0225 (4)0.0050 (4)
N40.0578 (5)0.0561 (5)0.0460 (5)0.0022 (4)0.0153 (4)0.0013 (4)
N70.0968 (11)0.1108 (12)0.0611 (8)0.0297 (7)0.0386 (7)0.0003 (6)
C30.0519 (6)0.0588 (6)0.0452 (5)0.0024 (5)0.0135 (4)0.0032 (5)
C50.0530 (5)0.0511 (5)0.0451 (5)0.0014 (4)0.0136 (4)0.0003 (4)
C60.0563 (6)0.0514 (6)0.0440 (5)0.0031 (4)0.0144 (4)0.0006 (4)
C310.0508 (6)0.0607 (6)0.0507 (6)0.0018 (5)0.0058 (4)0.0076 (5)
C320.0571 (6)0.0798 (8)0.0524 (6)0.0077 (6)0.0062 (5)0.0177 (5)
C330.0649 (8)0.0954 (10)0.0671 (8)0.0208 (7)0.0006 (6)0.0267 (7)
C340.0694 (10)0.0752 (10)0.0900 (13)0.0193 (6)0.0132 (9)0.0201 (7)
C350.0697 (9)0.0695 (7)0.0828 (10)0.0051 (7)0.0039 (7)0.0023 (8)
C360.0578 (7)0.0660 (7)0.0659 (7)0.0021 (6)0.0057 (5)0.0011 (6)
C510.0525 (6)0.0593 (6)0.0426 (5)0.0065 (5)0.0121 (4)0.0044 (4)
C520.0730 (10)0.0680 (8)0.0584 (8)0.0055 (5)0.0212 (7)0.0080 (5)
C530.0830 (10)0.0850 (9)0.0607 (9)0.0037 (7)0.0216 (7)0.0181 (6)
C540.0779 (9)0.1029 (11)0.0487 (6)0.0177 (8)0.0259 (6)0.0037 (6)
C550.0747 (8)0.0833 (8)0.0635 (7)0.0113 (7)0.0315 (6)0.0178 (6)
C560.0680 (7)0.0609 (6)0.0571 (6)0.0083 (5)0.0225 (5)0.0090 (5)
C610.0674 (7)0.0539 (5)0.0433 (5)0.0046 (6)0.0093 (5)0.0016 (5)
C620.0915 (9)0.0567 (7)0.0547 (6)0.0009 (6)0.0064 (6)0.0018 (5)
C630.1393 (15)0.0572 (8)0.0612 (8)0.0166 (8)0.0020 (8)0.0044 (6)
C640.1146 (13)0.0931 (11)0.0642 (8)0.0476 (10)0.0003 (8)0.0045 (8)
C650.0844 (10)0.1098 (11)0.0645 (8)0.0360 (9)0.0129 (7)0.0006 (8)
C660.0714 (9)0.0806 (8)0.0543 (7)0.0163 (7)0.0165 (6)0.0052 (6)
Geometric parameters (Å, º) top
N1—C61.3293 (13)C51—C561.3824 (16)
N1—N21.3363 (13)C51—C521.3850 (16)
N2—C31.3344 (14)C52—C531.386 (2)
N4—C51.3174 (13)C52—H520.990 (17)
N4—C31.3509 (13)C53—C541.367 (2)
N7—C321.3559 (19)C53—H530.96 (2)
N7—H710.92 (3)C54—C551.379 (2)
N7—H720.94 (2)C54—H540.957 (19)
C3—C311.4717 (16)C55—C561.3831 (17)
C5—C61.4164 (14)C55—H550.98 (2)
C5—C511.4893 (14)C56—H561.003 (15)
C6—C611.4865 (16)C61—C661.3874 (19)
C31—C361.4029 (17)C61—C621.3936 (17)
C31—C321.4200 (16)C62—C631.387 (2)
C32—C331.4152 (19)C62—H620.989 (18)
C33—C341.358 (2)C63—C641.379 (3)
C33—H331.000 (19)C63—H630.96 (2)
C34—C351.393 (3)C64—C651.368 (3)
C34—H340.95 (2)C64—H640.99 (3)
C35—C361.372 (2)C65—C661.385 (2)
C35—H351.01 (2)C65—H651.02 (2)
C36—H360.988 (17)C66—H660.973 (19)
C6—N1—N2119.97 (9)C52—C51—C5120.71 (10)
C3—N2—N1119.44 (9)C51—C52—C53119.81 (12)
C5—N4—C3117.47 (9)C51—C52—H52117.1 (10)
C32—N7—H71117.6 (14)C53—C52—H52123.1 (10)
C32—N7—H72118.4 (13)C54—C53—C52120.20 (14)
H71—N7—H72123 (2)C54—C53—H53121.8 (11)
N2—C3—N4123.24 (10)C52—C53—H53118.0 (11)
N2—C3—C31118.99 (9)C53—C54—C55120.29 (12)
N4—C3—C31117.75 (10)C53—C54—H54120.6 (12)
N4—C5—C6120.33 (9)C55—C54—H54119.1 (12)
N4—C5—C51115.34 (9)C54—C55—C56119.98 (13)
C6—C5—C51124.33 (9)C54—C55—H55120.5 (12)
N1—C6—C5119.27 (10)C56—C55—H55119.6 (12)
N1—C6—C61114.97 (9)C55—C56—C51119.95 (12)
C5—C6—C61125.74 (9)C55—C56—H56118.8 (11)
C36—C31—C32118.88 (11)C51—C56—H56121.2 (11)
C36—C31—C3118.05 (10)C66—C61—C62118.64 (13)
C32—C31—C3123.04 (10)C66—C61—C6121.68 (11)
N7—C32—C33119.15 (12)C62—C61—C6119.60 (11)
N7—C32—C31123.76 (11)C63—C62—C61119.86 (15)
C33—C32—C31117.09 (13)C63—C62—H62122.1 (10)
C34—C33—C32122.06 (14)C61—C62—H62118.0 (10)
C34—C33—H33120.7 (12)C64—C63—C62120.86 (15)
C32—C33—H33117.2 (12)C64—C63—H63120.9 (15)
C33—C34—C35121.08 (13)C62—C63—H63118.1 (15)
C33—C34—H34122.9 (12)C65—C64—C63119.45 (15)
C35—C34—H34116.0 (12)C65—C64—H64119.1 (15)
C36—C35—C34118.24 (15)C63—C64—H64121.5 (15)
C36—C35—H35119.8 (12)C64—C65—C66120.48 (17)
C34—C35—H35121.8 (12)C64—C65—H65121.9 (12)
C35—C36—C31122.48 (13)C66—C65—H65117.5 (12)
C35—C36—H36118.7 (10)C65—C66—C61120.72 (14)
C31—C36—H36118.8 (10)C65—C66—H66118.8 (11)
C56—C51—C52119.73 (11)C61—C66—H66120.4 (11)
C56—C51—C5119.50 (10)
C6—N1—N2—C33.18 (16)C32—C31—C36—C353.59 (18)
N1—N2—C3—N44.71 (17)C3—C31—C36—C35174.22 (12)
N1—N2—C3—C31174.12 (10)N4—C5—C51—C5656.74 (14)
C5—N4—C3—N21.09 (16)C6—C5—C51—C56124.24 (12)
C5—N4—C3—C31177.74 (10)N4—C5—C51—C52120.48 (13)
C3—N4—C5—C63.78 (15)C6—C5—C51—C5258.55 (16)
C3—N4—C5—C51175.29 (10)C56—C51—C52—C531.1 (2)
N2—N1—C6—C51.55 (16)C5—C51—C52—C53176.07 (14)
N2—N1—C6—C61176.68 (10)C51—C52—C53—C542.2 (3)
N4—C5—C6—N15.17 (16)C52—C53—C54—C551.3 (2)
C51—C5—C6—N1173.81 (10)C53—C54—C55—C560.5 (2)
N4—C5—C6—C61172.85 (10)C54—C55—C56—C511.5 (2)
C51—C5—C6—C618.17 (17)C52—C51—C56—C550.68 (19)
N2—C3—C31—C36170.85 (10)C5—C51—C56—C55177.92 (11)
N4—C3—C31—C368.04 (16)N1—C6—C61—C66141.19 (12)
N2—C3—C31—C326.86 (17)C5—C6—C61—C6636.90 (18)
N4—C3—C31—C32174.25 (10)N1—C6—C61—C6235.44 (15)
C36—C31—C32—N7174.38 (14)C5—C6—C61—C62146.47 (11)
C3—C31—C32—N77.92 (19)C66—C61—C62—C630.48 (19)
C36—C31—C32—C334.54 (17)C6—C61—C62—C63177.22 (11)
C3—C31—C32—C33173.16 (11)C61—C62—C63—C640.1 (2)
N7—C32—C33—C34176.88 (15)C62—C63—C64—C650.5 (2)
C31—C32—C33—C342.1 (2)C63—C64—C65—C660.7 (2)
C32—C33—C34—C351.6 (2)C64—C65—C66—C610.3 (2)
C33—C34—C35—C362.7 (2)C62—C61—C66—C650.3 (2)
C34—C35—C36—C310.1 (2)C6—C61—C66—C65176.97 (13)
Hydrogen-bond geometry (Å, º) top
Cg - the centroid of the C31-C36 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N7—H72···N20.94 (2)2.00 (2)2.7037 (19)130 (2)
N7—H71···N1i0.93 (3)2.26 (3)3.1779 (19)169 (2)
N7—H71···N2i0.93 (3)2.49 (2)3.2677 (18)141.3 (19)
C53—H53···Cgii0.96 (2)2.99 (2)3.5888 (19)122.0 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H16N4
Mr324.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8797 (3), 6.0788 (1), 23.8710 (5)
β (°) 101.489 (1)
V3)1689.29 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.21 × 0.14 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.906, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4591, 3173, 2837
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.05
No. of reflections4591
No. of parameters275
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.10, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg - the centroid of the C31-C36 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N7—H72···N20.94 (2)2.00 (2)2.7037 (19)130 (2)
N7—H71···N1i0.93 (3)2.26 (3)3.1779 (19)169 (2)
N7—H71···N2i0.93 (3)2.49 (2)3.2677 (18)141.3 (19)
C53—H53···Cgii0.96 (2)2.99 (2)3.5888 (19)122.0 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

This research was supported by grant No. NN405 092340 from the National Science Centre, Poland.

References

First citationAgarwal, P. K., Saifuddin, M. & Kundu, B. (2010). Tetrahedron, 66, 862–870.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCard, G. L., England, B. P., Suzuki, Y., Fong, D., Powell, B., Lee, B., Luu, C., Tabrizizad, M., Gillette, S., Ibrahim, P. N., Artis, D. R., Bollag, G., Milburn, M. V., Kim, S. H., Schlessinger, J. & Zhang, K. Y. (2004). Structure, 12, 2233–2247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerrett, N. K., Bell, A. S., Brown, D. & Ellis, P. (1996). Bioorg. Med. Chem. Lett. 6, 1819–1824.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds