[Journal logo]

Volume 68 
Part 12 
Pages i89-i90  
December 2012  

Received 17 October 2012
Accepted 2 November 2012
Online 10 November 2012

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](N-C) = 0.002 Å
R = 0.017
wR = 0.052
Data-to-parameter ratio = 15.2
Details
Open access

Poly[diamminedi-[mu]3-dicyanamido-copper(II)]

aFaculty Chemistry Engineering, Michoacán University, Morelia, Michoacán, Mexico,bCOFEPRIS, Michoacán University, Morelia, Michoacán, Mexico,cInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic 81237, and dInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
Correspondence e-mail: viktor.vrabel@stuba.sk

The asymmetric unit of the title polymeric mononuclear CuII complex, [Cu(C2N3)2(NH3)2]n, contains one half-molecule, the complex being completed through inversion symmetry, with the CuII atom situated on the centre of symmetry. The coordination polyhedron around CuII is a Jahn-Teller-distorted [CuN6] octahedron. The terminal N atoms of two dicyanamide ligands and two ammine ligands form an approximate square plane, with N-Cu-N bite angles of 89.72 (5) and 90.28 (5)°. The coordination polyhedron is completed in the axial positions by the central amide-type N atoms of two additional dicyanamide ligands, with an elongated Cu-N distance of 2.548 (1) Å. In turn, each of the four dicyanamide ligands, acting as bidentate, link the CuII ions into a two-dimensional polymeric structure parallel to (100). The ammine H atoms are involved in intermolecular hydrogen bonding with the free terminal N atoms of neighbouring dicyanamide ligands, yielding a three-dimensional network.

Related literature

For bonding modes of the dicyanamide ligand, see: Burcák et al. (2004[Burcák, M., Potocnák, I., Baran, P. & Jäger, L. (2004). Acta Cryst. C60, m601-m604.]); Yang et al. (2004[Yang, H.-J., Kou, H.-Z., Gao, F., Cui, A.-L. & Wang, R.-J. (2004). Acta Cryst. E60, m611-m613.]); van Albada et al. (2001[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Acta Cryst. E57, m421-m423.]); Potocnák et al. (2002[Potocnák, I., Burcák, M., Massa, W. & Jäger, L. (2002). Acta Cryst. C58, m523-m528.]); Zhang et al. (2004[Zhang, B., Kou, H.-Z., He, Y., Wang, H.-G. & Cui, A.-L. (2004). Acta Cryst. C60, m341-m342.]); Mohamadou et al. (2003[Mohamadou, A., van Albada, G. A., Kooijman, H., Wieczorek, B., Spek, A. L. & Reedijk, J. (2003). New J. Chem. pp. 983-988.]); Batten et al. (2000[Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. & Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829-3836.]); Kozísek et al. (2007[Kozísek, J., Díaz, J. G. & Albor, A. G. (2007). Acta Cryst. E63, i125-i126.]). For magnetic properties of [M(dicyanamide)2] compounds, see: Batten & Murray (2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]); Kurmoo & Kepert (1998[Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515-1524.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2N3)2(NH3)2]

  • Mr = 229.72

  • Monoclinic, P 21 /c

  • a = 7.1310 (2) Å

  • b = 9.6301 (2) Å

  • c = 7.2162 (2) Å

  • [beta] = 113.782 (3)°

  • V = 453.47 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 2.38 mm-1

  • T = 298 K

  • 0.52 × 0.32 × 0.17 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2010)[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Acta Cryst. E57, m421-m423.], based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.410, Tmax = 0.682

  • 19836 measured reflections

  • 1126 independent reflections

  • 1019 reflections with I > 2[sigma](I)

  • Rint = 0.016

Refinement
  • R[F2 > 2[sigma](F2)] = 0.017

  • wR(F2) = 0.052

  • S = 1.07

  • 1126 reflections

  • 74 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.21 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...N4i 0.84 (2) 2.43 (2) 3.2555 (18) 165.4 (19)
N1-H2...N4ii 0.89 (2) 2.34 (2) 3.2278 (18) 175.7 (17)
N1-H3...N4iii 0.81 (2) 2.43 (2) 3.2073 (18) 162.1 (19)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2087 ).


Acknowledgements

The authors thank the Grant Agency of Slovak Republic (grant No. 1/0679/11 and CONACYT No. SNI20438) as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Acta Cryst. E57, m421-m423.  [CSD] [CrossRef] [details]
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.  [ISI] [CrossRef] [ChemPort] [details]
Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. & Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829-3836.  [CSD] [CrossRef]
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.  [ISI] [CrossRef] [ChemPort]
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burcák, M., Potocnák, I., Baran, P. & Jäger, L. (2004). Acta Cryst. C60, m601-m604.  [CSD] [CrossRef] [details]
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.  [CrossRef] [details]
Kozísek, J., Díaz, J. G. & Albor, A. G. (2007). Acta Cryst. E63, i125-i126.  [CrossRef] [details]
Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515-1524.  [ISI] [CSD] [CrossRef] [ChemPort]
Mohamadou, A., van Albada, G. A., Kooijman, H., Wieczorek, B., Spek, A. L. & Reedijk, J. (2003). New J. Chem. pp. 983-988.  [ISI] [CSD] [CrossRef]
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Potocnák, I., Burcák, M., Massa, W. & Jäger, L. (2002). Acta Cryst. C58, m523-m528.  [CSD] [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Yang, H.-J., Kou, H.-Z., Gao, F., Cui, A.-L. & Wang, R.-J. (2004). Acta Cryst. E60, m611-m613.  [CSD] [CrossRef] [details]
Zhang, B., Kou, H.-Z., He, Y., Wang, H.-G. & Cui, A.-L. (2004). Acta Cryst. C60, m341-m342.  [CSD] [CrossRef] [details]


Acta Cryst (2012). E68, i89-i90   [ doi:10.1107/S1600536812045382 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.