supplementary materials


lr2087 scheme

Acta Cryst. (2012). E68, i89-i90    [ doi:10.1107/S1600536812045382 ]

Poly[diamminedi-[mu]3-dicyanamido-copper(II)]

J. G. Díaz, A. G. Albor, E. V. Jaime, V. Vrábel and J. Kozísek

Abstract top

The asymmetric unit of the title polymeric mononuclear CuII complex, [Cu(C2N3)2(NH3)2]n, contains one half-molecule, the complex being completed through inversion symmetry, with the CuII atom situated on the centre of symmetry. The coordination polyhedron around CuII is a Jahn-Teller-distorted [CuN6] octahedron. The terminal N atoms of two dicyanamide ligands and two ammine ligands form an approximate square plane, with N-Cu-N bite angles of 89.72 (5) and 90.28 (5)°. The coordination polyhedron is completed in the axial positions by the central amide-type N atoms of two additional dicyanamide ligands, with an elongated Cu-N distance of 2.548 (1) Å. In turn, each of the four dicyanamide ligands, acting as bidentate, link the CuII ions into a two-dimensional polymeric structure parallel to (100). The ammine H atoms are involved in intermolecular hydrogen bonding with the free terminal N atoms of neighbouring dicyanamide ligands, yielding a three-dimensional network.

Comment top

Among the various classes of ligands currently employed for the generation of coordination compounds, dicyanamide (dca) has been attracting a lot of attention, partly due to the discovery of interesting magnetic properties in the M(dca)2 compounds (Batten & Murray, 2003; Kurmoo & Kepert, 1998). A particular feature of this ligand is the variability in coordination modes it can display and thus it is able to generate one- to three-dimensional networks, as well as molecular and ionic compounds, depending on its metallic centers and its organic coligands. In coordination compounds of copper, the dca anion, (N(CN)2), exhibits a rich variety of bonding modes. It can coordinate either in a monodentate manner (Burčák et al., 2004; Yang et al., 2004;) or, more typically, in a bidentate manner [two types of binding: mainly through two nitrile N atoms (Albada et al., 2001; Potočňák et al., 2002; Zhang et al., 2004), but also through one amide and one nitrile N atom (Mohamadou et al., 2003), or even in a tridentate manner (Batten et al., 2000; Kožíšek et al., 2007). The asymmetric unit of the title compound, (I), [Cu(N(CN)2)2(NH3)2]n, contains one-half of the molecule with the CuII atom situated at the centre of symmetry and is octahedrally coordinated by two ammino and two bidentate dca ligands, forming a CuN6 coordination environment (Fig.1). Two terminal N atoms of two dca units and two ammino ligands forming an approximate square plane with N—Cu—N bite angles of 89.72 (5) and 90.28 (5)°. Coordinaton polyhedron is completed in axial position by the central amide N atoms of two additional dca ligands with the Cu–N elongated distance of 2.548 (1) Å as a result of the Jahn–Teller effect. The amino H atoms are involved in intermolecular hydrogen bonding with the free terminal N atoms of neighbouring dicyanamide ligands, yielding a three-dimensional network (Fig.2).

Related literature top

For bonding modes of the dicyanamide ligand, see: Burčák et al. (2004); Yang et al. (2004); van Albada et al. (2001); Potočňák et al. (2002); Zhang et al. (2004); Mohamadou et al. (2003); Batten et al. (2000); Kožíšek et al. (2007). For magnetic properties of [M(dicyanamide)2] compounds, see: Batten & Murray (2003); Kurmoo & Kepert (1998).

Experimental top

A solution of Cu(SO4)2.5H2O (2.0 mmol) in water (3 ml) was added to a solution of K[N(CN)2] (4.0 mmol) in water (10 ml)and mixed with a solution of ammine (4.0 mmol) in water (10 ml). After standing for a few days, blue crystals of (I) were isolated (yield: ca 10%).

Refinement top

The ammine H atoms were located in a difference Fourier map and refined with a fixed isotropic displacement parameter.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of (I), with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) showing the hydrogen-bonding network as green dashed lines.
Poly[diamminedi-µ3-dicyanamido-copper(II)] top
Crystal data top
[Cu(C2N3)2(NH3)2]F(000) = 230
Mr = 229.72Dx = 1.682 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15460 reflections
a = 7.1310 (2) Åθ = 3.7–29.3°
b = 9.6301 (2) ŵ = 2.38 mm1
c = 7.2162 (2) ÅT = 298 K
β = 113.782 (3)°Block, dark blue
V = 453.47 (2) Å30.52 × 0.32 × 0.17 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1126 independent reflections
Radiation source: fine-focus sealed tube1019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.4340 pixels mm-1θmax = 28.3°, θmin = 3.7°
ω and φ scansh = 99
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
k = 1212
Tmin = 0.410, Tmax = 0.682l = 99
19836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
1126 reflections(Δ/σ)max < 0.001
74 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cu(C2N3)2(NH3)2]V = 453.47 (2) Å3
Mr = 229.72Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.1310 (2) ŵ = 2.38 mm1
b = 9.6301 (2) ÅT = 298 K
c = 7.2162 (2) Å0.52 × 0.32 × 0.17 mm
β = 113.782 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1126 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
1019 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 0.682Rint = 0.016
19836 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.25 e Å3
1126 reflectionsAbsolute structure: ?
74 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2010)

Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.8 (release 30-07-2007 CrysAlis171 .NET) (compiled Jul 30 2007,18:35:48) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12500 (18)0.20615 (12)0.40737 (17)0.0314 (2)
C20.2567 (2)0.00704 (11)0.5168 (2)0.0313 (3)
N10.26849 (18)0.41648 (13)0.45514 (19)0.0362 (2)
H10.351 (3)0.472 (2)0.371 (4)0.054 (6)*
H20.283 (3)0.417 (2)0.572 (3)0.053 (5)*
H30.281 (3)0.338 (3)0.410 (3)0.062 (6)*
N20.09027 (19)0.32110 (12)0.42058 (18)0.0416 (3)
N30.15107 (18)0.07772 (11)0.36879 (16)0.0389 (3)
N40.3460 (2)0.09051 (13)0.63406 (19)0.0462 (3)
Cu10.00000.50000.50000.02839 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0349 (5)0.0285 (6)0.0293 (5)0.0008 (4)0.0114 (4)0.0034 (4)
C20.0340 (6)0.0271 (6)0.0332 (6)0.0019 (4)0.0140 (5)0.0056 (4)
N10.0405 (6)0.0299 (5)0.0365 (6)0.0005 (4)0.0138 (5)0.0001 (5)
N20.0518 (7)0.0276 (5)0.0431 (6)0.0054 (5)0.0168 (5)0.0042 (4)
N30.0520 (6)0.0267 (5)0.0313 (5)0.0077 (4)0.0097 (5)0.0046 (4)
N40.0520 (7)0.0353 (6)0.0459 (6)0.0033 (5)0.0140 (5)0.0045 (5)
Cu10.03572 (14)0.01832 (13)0.03050 (14)0.00135 (6)0.01271 (10)0.00132 (6)
Geometric parameters (Å, º) top
C1—N21.1466 (17)N1—H20.89 (2)
C1—N31.2975 (16)N1—H30.81 (2)
C2—N41.1546 (18)N2—Cu12.0021 (11)
C2—N31.3135 (17)Cu1—N1i1.9793 (12)
N1—Cu11.9793 (12)Cu1—N2i2.0021 (11)
N1—H10.84 (2)
N2—C1—N3172.98 (14)C1—N2—Cu1163.67 (11)
N4—C2—N3173.97 (14)C1—N3—C2120.18 (11)
Cu1—N1—H1102.1 (15)N1i—Cu1—N1180.00 (7)
Cu1—N1—H2108.6 (12)N1i—Cu1—N289.72 (5)
H1—N1—H2111 (2)N1—Cu1—N290.28 (5)
Cu1—N1—H3112.9 (15)N1i—Cu1—N2i90.28 (5)
H1—N1—H3112 (2)N1—Cu1—N2i89.72 (5)
H2—N1—H3110.2 (19)N2—Cu1—N2i180.0
N3—C1—N2—Cu1124.8 (10)C1—N2—Cu1—N1i130.8 (4)
N2—C1—N3—C2178.5 (11)C1—N2—Cu1—N149.2 (4)
N4—C2—N3—C1179 (100)C1—N2—Cu1—N2i24 (100)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4ii0.84 (2)2.43 (2)3.2555 (18)165.4 (19)
N1—H2···N4iii0.89 (2)2.34 (2)3.2278 (18)175.7 (17)
N1—H3···N4iv0.81 (2)2.43 (2)3.2073 (18)162.1 (19)
Symmetry codes: (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z+3/2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.84 (2)2.43 (2)3.2555 (18)165.4 (19)
N1—H2···N4ii0.89 (2)2.34 (2)3.2278 (18)175.7 (17)
N1—H3···N4iii0.81 (2)2.43 (2)3.2073 (18)162.1 (19)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+3/2; (iii) x, y, z+1.
Acknowledgements top

The authors thank the Grant Agency of Slovak Republic (grant No. 1/0679/11 and CONACYT No. SNI20438) as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

references
References top

Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Acta Cryst. E57, m421–m423.

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. & Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829–3836.

Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Burčák, M., Potočňák, I., Baran, P. & Jäger, L. (2004). Acta Cryst. C60, m601–m604.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Kožíšek, J., Díaz, J. G. & Albor, A. G. (2007). Acta Cryst. E63, i125–i126.

Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515–1524.

Mohamadou, A., van Albada, G. A., Kooijman, H., Wieczorek, B., Spek, A. L. & Reedijk, J. (2003). New J. Chem. pp. 983–988.

Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Potočňák, I., Burčák, M., Massa, W. & Jäger, L. (2002). Acta Cryst. C58, m523–m528.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yang, H.-J., Kou, H.-Z., Gao, F., Cui, A.-L. & Wang, R.-J. (2004). Acta Cryst. E60, m611–m613.

Zhang, B., Kou, H.-Z., He, Y., Wang, H.-G. & Cui, A.-L. (2004). Acta Cryst. C60, m341–m342.