organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,7-Dimeth­­oxy-8-[4-(2-methyl­prop­yl)benzo­yl]naphthalen-1-yl}[4-(2-methyl­prop­yl)phen­yl]methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 27 October 2012; accepted 7 November 2012; online 14 November 2012)

In the mol­ecule of the title compound, C34H36O4, the two 4-isobutyl­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, and the benzene rings make a dihedral angle of 21.59 (7)°. The dihedral angles between the benzene rings and the naphthalene ring system are 69.26 (6) and 64.29 (5)°. There are no classical hydrogen bonds in the structure, but inversion-related mol­ecules engage in ππ stacking, with an inter­planar spacing between related naphthalene groups of 3.4120 (16) Å.

Related literature

For details of the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Sasagawa, Hijikata et al. (2011[Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.]); Sasagawa, Muto et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Sasagawa et al. (2012[Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596.]).

[Scheme 1]

Experimental

Crystal data
  • C34H36O4

  • Mr = 508.63

  • Monoclinic, P 21 /c

  • a = 18.5280 (4) Å

  • b = 7.83885 (15) Å

  • c = 20.2304 (4) Å

  • β = 103.642 (1)°

  • V = 2855.33 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.714, Tmax = 0.971

  • 50913 measured reflections

  • 5237 independent reflections

  • 3838 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.12

  • 5237 reflections

  • 350 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011), [2,7-dimethoxy-8-(4-propylbenzoyl)-naphthalen-1-yl](4-propylphenyl)-methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2012). The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (anti-orientation). Moreover, we have also clarified that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in the same direction (syn-orientation). As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylatednaphthalene bearing isobutyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-isobutylbenzoyl groups are situated in the anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 21.59 (7)°. The dihedral angles between the best planes of the 4-isobutylphenyl rings and the naphthalene ring are 69.26 (6)° and 64.29 (5)°.

The CO bond of the ketonic carbonyl moiety (C12O4), carbon atom (C31) of isobutyl groups, and benzene ring lie on the same plane [torsion angles O4—C12—C19—C24 = 2.49 (18)°; C31—C22—C23—C24 = 176.11 (14)°]. The corresponding torsion angles in the other aroyl group are 172.86 (12)° [O3—C11—C13—C14] and 178.36 (17)° [C27—C16—C17—C18], respectively.

In the molecular packing, C—H···O interactions between the carbonyl oxygen atoms and hydrogen atoms of benzene ring are observed along b axis. The C—H···O interactions effectively contribute to stabilization of the molecular alignment (C21—H21···O4 = 2.34 Å; symmetry code: x,-1 + y, z; Fig. 2).

Related literature top

For details of the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Sasagawa et al. (2012).

Experimental top

To a 50 ml flask, 4-isobutylbenzoic acid (1.96 g, 11.0 mmol), phosphorus pentoxide–methanesulfonic acid mixture (P2O5–MsOH [1/10 w/w]; 22.0 ml) were placed and stirred at 333 K. To the solution thus obtained, 2,7-dimethoxynaphthalene (941 mg, 5.0 mmol) was added. After the reaction mixture was stirred at 333 K for 1.0 h, the reaction mixture was poured into ice-cold water (30 ml). The aqueous layer was extracted with CHCl3 (15 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (100% yield). The crude product was purified by recrystallization from methanol (32% yield). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.

Spectroscopic Data:

1H-NMR δ (300 MHz, CDCl3): 0.91 (12H, d, J = 6.6 Hz), 1.89 (2H, m, J= 6.6 Hz), 2.49 (4H, d, J = 6.6 Hz), 3.68 (6H, s), 7.09 (4H, d, J = 7.5 Hz), 7.20 (2H, d, J = 9.0 Hz), 7.59(2H, d, J = 7.5 Hz), 7.95 (4H, d, J = 9.0 Hz)

13C-NMR δ (75 MHz, CDCl3): 22.3, 29.3, 45.4, 56.2, 111.1, 121.5, 125.3, 128.5, 128.9, 129.4, 131.7, 136.4, 146.7, 156.0, 196.2 p.p.m.

IR (KBr): 2952 (CH3), 2911 (CH2), 1652 (C=O), 1605, 1510, 1460 (Ar) cm-1

HRMS (m/z): [M+H]+ calcd. for C34H37O4, 509.2692, found, 509.2608

m.p.= 472.0—474.0 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) Å, 0.99 (methylene) and 1.00 (methyne) with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the title compound (50% probability). Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the packing of the title compound viewed roughly down the crystallographic a axis. A chain of C—H···O interactions that propagates parallel to b is indicated by dotted lines.
{2,7-Dimethoxy-8-[4-(2-methylpropyl)benzoyl]naphthalen-1-yl}[4-(2- methylpropyl)phenyl]methanone top
Crystal data top
C34H36O4F(000) = 1088
Mr = 508.63Dx = 1.183 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 26694 reflections
a = 18.5280 (4) Åθ = 3.7–68.3°
b = 7.83885 (15) ŵ = 0.60 mm1
c = 20.2304 (4) ÅT = 193 K
β = 103.642 (1)°Platelet, colorless
V = 2855.33 (10) Å30.60 × 0.40 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5237 independent reflections
Radiation source: fine-focus sealed tube3838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 68.2°, θmin = 4.5°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2122
Tmin = 0.714, Tmax = 0.971k = 99
50913 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
5237 reflectionsΔρmax = 0.17 e Å3
350 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (2)
Crystal data top
C34H36O4V = 2855.33 (10) Å3
Mr = 508.63Z = 4
Monoclinic, P21/cCu Kα radiation
a = 18.5280 (4) ŵ = 0.60 mm1
b = 7.83885 (15) ÅT = 193 K
c = 20.2304 (4) Å0.60 × 0.40 × 0.05 mm
β = 103.642 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5237 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3838 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.971Rint = 0.052
50913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.12Δρmax = 0.17 e Å3
5237 reflectionsΔρmin = 0.15 e Å3
350 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66145 (6)0.32112 (15)0.61940 (5)0.0635 (3)
O20.53292 (5)0.00068 (13)0.27977 (5)0.0576 (3)
O30.71658 (5)0.02470 (13)0.51300 (5)0.0553 (3)
O40.67422 (5)0.26567 (12)0.36980 (5)0.0527 (3)
C10.62041 (8)0.22224 (18)0.50872 (7)0.0453 (3)
C20.60247 (8)0.29086 (19)0.56568 (7)0.0509 (4)
C30.52803 (9)0.3152 (2)0.56905 (8)0.0565 (4)
H30.51680.36690.60790.068*
C40.47275 (9)0.26432 (19)0.51642 (8)0.0555 (4)
H40.42270.27780.51950.067*
C50.42902 (8)0.13689 (19)0.40346 (8)0.0537 (4)
H50.37930.14770.40780.064*
C60.44203 (8)0.0687 (2)0.34550 (8)0.0547 (4)
H60.40190.03050.31020.066*
C70.51556 (8)0.05545 (18)0.33848 (7)0.0478 (4)
C80.57515 (7)0.10547 (17)0.38983 (6)0.0434 (3)
C90.56242 (7)0.17307 (17)0.45187 (6)0.0440 (3)
C100.48732 (8)0.19171 (18)0.45706 (7)0.0478 (4)
C110.70027 (8)0.1766 (2)0.51402 (6)0.0469 (4)
C120.65026 (7)0.12146 (18)0.37335 (6)0.0428 (3)
C130.75748 (8)0.3109 (2)0.52059 (6)0.0481 (4)
C140.73950 (9)0.4833 (2)0.51447 (7)0.0545 (4)
H140.68900.51700.50680.065*
C150.79377 (9)0.6062 (2)0.51933 (8)0.0600 (4)
H150.78020.72330.51490.072*
C160.86786 (9)0.5603 (2)0.53064 (8)0.0638 (4)
C170.88575 (9)0.3888 (3)0.53645 (10)0.0737 (5)
H170.93630.35550.54410.088*
C180.83170 (9)0.2650 (2)0.53138 (8)0.0641 (4)
H180.84540.14790.53530.077*
C190.69369 (8)0.02869 (17)0.36131 (6)0.0422 (3)
C200.66833 (8)0.19549 (18)0.36293 (6)0.0465 (4)
H200.62140.21580.37290.056*
C210.71025 (8)0.33134 (19)0.35037 (7)0.0498 (4)
H210.69190.44410.35180.060*
C220.77954 (8)0.30609 (19)0.33551 (7)0.0486 (4)
C230.80510 (8)0.1394 (2)0.33565 (8)0.0550 (4)
H230.85240.11890.32670.066*
C240.76339 (8)0.00324 (19)0.34854 (7)0.0515 (4)
H240.78250.10930.34870.062*
C250.65039 (10)0.4214 (2)0.67461 (8)0.0731 (5)
H25A0.62490.52750.65720.088*
H25B0.69860.44830.70500.088*
H25C0.62000.35770.69980.088*
C260.47399 (9)0.0512 (2)0.22480 (7)0.0619 (4)
H26A0.49460.09480.18770.074*
H26B0.44170.04660.20860.074*
H26C0.44510.14120.24020.074*
C270.92724 (10)0.6961 (3)0.53805 (11)0.0823 (6)
H27A0.91380.77500.49890.099*
H27B0.97480.64080.53640.099*
C280.93864 (10)0.7998 (3)0.60370 (11)0.0817 (6)
H280.89070.85880.60350.098*
C290.99748 (11)0.9370 (3)0.60563 (15)0.1205 (9)
H29A1.04510.88290.60530.145*
H29B1.00281.00530.64710.145*
H29C0.98241.01110.56570.145*
C300.95729 (12)0.6876 (3)0.66594 (12)0.1083 (8)
H30A0.96500.75860.70690.130*
H30B1.00270.62320.66630.130*
H30C0.91630.60810.66520.130*
C310.82253 (8)0.4543 (2)0.31722 (7)0.0565 (4)
H31A0.82710.54290.35280.068*
H31B0.87320.41540.31680.068*
C320.78695 (9)0.5339 (2)0.24818 (8)0.0579 (4)
H320.73870.58660.25140.069*
C330.77059 (10)0.4010 (3)0.19229 (8)0.0755 (5)
H33A0.73480.31800.20190.091*
H33B0.74970.45670.14860.091*
H33C0.81670.34220.19020.091*
C340.83574 (9)0.6740 (2)0.23036 (9)0.0711 (5)
H34A0.88190.62400.22350.085*
H34B0.80950.73110.18850.085*
H34C0.84730.75710.26750.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0687 (7)0.0842 (8)0.0372 (5)0.0057 (6)0.0118 (5)0.0101 (5)
O20.0578 (6)0.0690 (8)0.0419 (5)0.0008 (5)0.0037 (4)0.0095 (5)
O30.0656 (7)0.0522 (7)0.0466 (6)0.0076 (5)0.0103 (5)0.0012 (5)
O40.0626 (6)0.0452 (6)0.0515 (6)0.0059 (5)0.0161 (5)0.0028 (5)
C10.0543 (8)0.0444 (9)0.0385 (7)0.0016 (6)0.0132 (6)0.0038 (6)
C20.0615 (9)0.0520 (9)0.0402 (7)0.0029 (7)0.0144 (7)0.0031 (6)
C30.0670 (10)0.0617 (10)0.0456 (8)0.0080 (8)0.0229 (7)0.0026 (7)
C40.0595 (9)0.0571 (10)0.0549 (9)0.0059 (7)0.0238 (7)0.0094 (7)
C50.0483 (8)0.0528 (10)0.0607 (9)0.0002 (7)0.0139 (7)0.0073 (7)
C60.0525 (9)0.0526 (10)0.0552 (9)0.0028 (7)0.0049 (7)0.0003 (7)
C70.0523 (8)0.0459 (9)0.0436 (8)0.0006 (7)0.0082 (6)0.0009 (6)
C80.0505 (8)0.0394 (8)0.0399 (7)0.0011 (6)0.0098 (6)0.0043 (6)
C90.0520 (8)0.0402 (8)0.0405 (7)0.0011 (6)0.0120 (6)0.0064 (6)
C100.0525 (8)0.0447 (9)0.0484 (8)0.0018 (7)0.0165 (7)0.0079 (6)
C110.0587 (9)0.0518 (10)0.0294 (6)0.0052 (7)0.0090 (6)0.0023 (6)
C120.0529 (8)0.0437 (9)0.0304 (6)0.0037 (7)0.0072 (6)0.0026 (6)
C130.0525 (9)0.0558 (10)0.0358 (7)0.0014 (7)0.0099 (6)0.0001 (6)
C140.0521 (9)0.0589 (11)0.0492 (8)0.0019 (7)0.0056 (7)0.0025 (7)
C150.0640 (10)0.0599 (11)0.0540 (9)0.0040 (8)0.0094 (7)0.0004 (8)
C160.0617 (10)0.0731 (12)0.0600 (10)0.0103 (9)0.0213 (8)0.0056 (8)
C170.0517 (10)0.0813 (14)0.0927 (13)0.0007 (9)0.0260 (9)0.0087 (11)
C180.0587 (10)0.0632 (11)0.0731 (11)0.0066 (8)0.0207 (8)0.0032 (9)
C190.0499 (8)0.0452 (9)0.0311 (6)0.0029 (6)0.0088 (6)0.0016 (6)
C200.0533 (8)0.0480 (9)0.0401 (7)0.0033 (7)0.0149 (6)0.0020 (6)
C210.0593 (9)0.0467 (9)0.0450 (8)0.0014 (7)0.0157 (7)0.0011 (6)
C220.0532 (9)0.0534 (10)0.0366 (7)0.0029 (7)0.0055 (6)0.0010 (6)
C230.0484 (8)0.0610 (10)0.0569 (9)0.0039 (7)0.0155 (7)0.0073 (7)
C240.0524 (9)0.0503 (9)0.0523 (8)0.0067 (7)0.0134 (7)0.0032 (7)
C250.0917 (13)0.0783 (12)0.0477 (9)0.0079 (10)0.0132 (8)0.0148 (9)
C260.0693 (10)0.0641 (11)0.0460 (8)0.0106 (8)0.0011 (7)0.0051 (7)
C270.0692 (12)0.0886 (15)0.0965 (14)0.0146 (10)0.0342 (10)0.0076 (11)
C280.0573 (11)0.0841 (14)0.1007 (15)0.0095 (10)0.0126 (10)0.0137 (12)
C290.0759 (14)0.1112 (19)0.173 (3)0.0314 (13)0.0276 (15)0.0368 (18)
C300.0873 (15)0.125 (2)0.0978 (17)0.0013 (14)0.0075 (12)0.0127 (15)
C310.0556 (9)0.0624 (10)0.0497 (8)0.0084 (8)0.0089 (7)0.0037 (7)
C320.0522 (9)0.0668 (11)0.0553 (9)0.0009 (8)0.0141 (7)0.0109 (8)
C330.0761 (12)0.1001 (15)0.0466 (9)0.0150 (11)0.0072 (8)0.0064 (9)
C340.0699 (11)0.0795 (13)0.0663 (11)0.0052 (9)0.0208 (9)0.0192 (9)
Geometric parameters (Å, º) top
O1—C21.3679 (17)C20—H200.9500
O1—C251.4198 (17)C21—C221.4000 (19)
O2—C71.3707 (16)C21—H210.9500
O2—C261.4218 (16)C22—C231.389 (2)
O3—C111.2297 (16)C22—C311.5034 (19)
O4—C121.2227 (15)C23—C241.3786 (19)
C1—C21.3814 (18)C23—H230.9500
C1—C91.4292 (19)C24—H240.9500
C1—C111.502 (2)C25—H25A0.9800
C2—C31.410 (2)C25—H25B0.9800
C3—C41.352 (2)C25—H25C0.9800
C3—H30.9500C26—H26A0.9800
C4—C101.4113 (19)C26—H26B0.9800
C4—H40.9500C26—H26C0.9800
C5—C61.361 (2)C27—C281.528 (3)
C5—C101.4053 (19)C27—H27A0.9900
C5—H50.9500C27—H27B0.9900
C6—C71.406 (2)C28—C301.508 (3)
C6—H60.9500C28—C291.526 (3)
C7—C81.3823 (18)C28—H281.0000
C8—C91.4322 (18)C29—H29A0.9800
C8—C121.5107 (18)C29—H29B0.9800
C9—C101.4274 (18)C29—H29C0.9800
C11—C131.478 (2)C30—H30A0.9800
C12—C191.4781 (18)C30—H30B0.9800
C13—C181.388 (2)C30—H30C0.9800
C13—C141.391 (2)C31—C321.530 (2)
C14—C151.379 (2)C31—H31A0.9900
C14—H140.9500C31—H31B0.9900
C15—C161.385 (2)C32—C331.515 (2)
C15—H150.9500C32—C341.519 (2)
C16—C171.383 (3)C32—H321.0000
C16—C271.513 (2)C33—H33A0.9800
C17—C181.381 (2)C33—H33B0.9800
C17—H170.9500C33—H33C0.9800
C18—H180.9500C34—H34A0.9800
C19—C241.3898 (19)C34—H34B0.9800
C19—C201.3923 (18)C34—H34C0.9800
C20—C211.3765 (18)
C2—O1—C25118.99 (12)C21—C22—C31120.63 (13)
C7—O2—C26118.26 (11)C24—C23—C22121.51 (14)
C2—C1—C9119.55 (13)C24—C23—H23119.2
C2—C1—C11117.40 (12)C22—C23—H23119.2
C9—C1—C11122.30 (12)C23—C24—C19120.72 (14)
O1—C2—C1115.22 (13)C23—C24—H24119.6
O1—C2—C3123.04 (13)C19—C24—H24119.6
C1—C2—C3121.58 (13)O1—C25—H25A109.5
C4—C3—C2119.34 (14)O1—C25—H25B109.5
C4—C3—H3120.3H25A—C25—H25B109.5
C2—C3—H3120.3O1—C25—H25C109.5
C3—C4—C10121.85 (14)H25A—C25—H25C109.5
C3—C4—H4119.1H25B—C25—H25C109.5
C10—C4—H4119.1O2—C26—H26A109.5
C6—C5—C10121.66 (13)O2—C26—H26B109.5
C6—C5—H5119.2H26A—C26—H26B109.5
C10—C5—H5119.2O2—C26—H26C109.5
C5—C6—C7119.25 (14)H26A—C26—H26C109.5
C5—C6—H6120.4H26B—C26—H26C109.5
C7—C6—H6120.4C16—C27—C28114.11 (15)
O2—C7—C8115.53 (12)C16—C27—H27A108.7
O2—C7—C6122.79 (13)C28—C27—H27A108.7
C8—C7—C6121.61 (13)C16—C27—H27B108.7
C7—C8—C9119.74 (12)C28—C27—H27B108.7
C7—C8—C12118.15 (12)H27A—C27—H27B107.6
C9—C8—C12120.88 (12)C30—C28—C29111.62 (19)
C10—C9—C1118.29 (12)C30—C28—C27111.91 (18)
C10—C9—C8117.86 (12)C29—C28—C27110.40 (18)
C1—C9—C8123.85 (12)C30—C28—H28107.6
C5—C10—C4120.89 (13)C29—C28—H28107.6
C5—C10—C9119.80 (13)C27—C28—H28107.6
C4—C10—C9119.30 (13)C28—C29—H29A109.5
O3—C11—C13121.17 (13)C28—C29—H29B109.5
O3—C11—C1118.13 (14)H29A—C29—H29B109.5
C13—C11—C1120.70 (13)C28—C29—H29C109.5
O4—C12—C19120.49 (12)H29A—C29—H29C109.5
O4—C12—C8117.11 (12)H29B—C29—H29C109.5
C19—C12—C8122.40 (12)C28—C30—H30A109.5
C18—C13—C14118.28 (15)C28—C30—H30B109.5
C18—C13—C11119.50 (14)H30A—C30—H30B109.5
C14—C13—C11122.19 (13)C28—C30—H30C109.5
C15—C14—C13121.14 (15)H30A—C30—H30C109.5
C15—C14—H14119.4H30B—C30—H30C109.5
C13—C14—H14119.4C22—C31—C32113.63 (12)
C14—C15—C16120.51 (16)C22—C31—H31A108.8
C14—C15—H15119.7C32—C31—H31A108.8
C16—C15—H15119.7C22—C31—H31B108.8
C17—C16—C15118.37 (16)C32—C31—H31B108.8
C17—C16—C27121.43 (16)H31A—C31—H31B107.7
C15—C16—C27120.19 (17)C33—C32—C34110.21 (13)
C18—C17—C16121.46 (16)C33—C32—C31111.58 (14)
C18—C17—H17119.3C34—C32—C31111.05 (13)
C16—C17—H17119.3C33—C32—H32107.9
C17—C18—C13120.23 (16)C34—C32—H32107.9
C17—C18—H18119.9C31—C32—H32107.9
C13—C18—H18119.9C32—C33—H33A109.5
C24—C19—C20118.21 (13)C32—C33—H33B109.5
C24—C19—C12118.82 (12)H33A—C33—H33B109.5
C20—C19—C12122.96 (12)C32—C33—H33C109.5
C21—C20—C19120.92 (13)H33A—C33—H33C109.5
C21—C20—H20119.5H33B—C33—H33C109.5
C19—C20—H20119.5C32—C34—H34A109.5
C20—C21—C22121.07 (13)C32—C34—H34B109.5
C20—C21—H21119.5H34A—C34—H34B109.5
C22—C21—H21119.5C32—C34—H34C109.5
C23—C22—C21117.51 (13)H34A—C34—H34C109.5
C23—C22—C31121.81 (13)H34B—C34—H34C109.5
C25—O1—C2—C1167.69 (14)C9—C8—C12—O459.53 (17)
C25—O1—C2—C316.9 (2)C7—C8—C12—C1971.74 (16)
C9—C1—C2—O1174.96 (12)C9—C8—C12—C19120.94 (14)
C11—C1—C2—O14.7 (2)O3—C11—C13—C185.3 (2)
C9—C1—C2—C30.6 (2)C1—C11—C13—C18174.38 (13)
C11—C1—C2—C3170.86 (13)O3—C11—C13—C14172.88 (13)
O1—C2—C3—C4172.57 (14)C1—C11—C13—C147.42 (19)
C1—C2—C3—C42.6 (2)C18—C13—C14—C150.3 (2)
C2—C3—C4—C101.9 (2)C11—C13—C14—C15178.56 (12)
C10—C5—C6—C71.1 (2)C13—C14—C15—C160.2 (2)
C26—O2—C7—C8179.50 (13)C14—C15—C16—C170.4 (2)
C26—O2—C7—C62.6 (2)C14—C15—C16—C27178.11 (15)
C5—C6—C7—O2174.82 (14)C15—C16—C17—C180.2 (3)
C5—C6—C7—C81.9 (2)C27—C16—C17—C18178.35 (16)
O2—C7—C8—C9176.77 (12)C16—C17—C18—C130.4 (3)
C6—C7—C8—C90.2 (2)C14—C13—C18—C170.6 (2)
O2—C7—C8—C129.30 (19)C11—C13—C18—C17178.87 (14)
C6—C7—C8—C12167.63 (13)O4—C12—C19—C242.49 (18)
C2—C1—C9—C102.1 (2)C8—C12—C19—C24178.00 (12)
C11—C1—C9—C10167.73 (12)O4—C12—C19—C20178.28 (12)
C2—C1—C9—C8178.13 (13)C8—C12—C19—C201.24 (18)
C11—C1—C9—C812.1 (2)C24—C19—C20—C211.77 (19)
C7—C8—C9—C102.21 (19)C12—C19—C20—C21178.99 (12)
C12—C8—C9—C10164.91 (12)C19—C20—C21—C220.1 (2)
C7—C8—C9—C1177.60 (13)C20—C21—C22—C231.6 (2)
C12—C8—C9—C115.3 (2)C20—C21—C22—C31175.83 (12)
C6—C5—C10—C4179.11 (14)C21—C22—C23—C241.3 (2)
C6—C5—C10—C91.3 (2)C31—C22—C23—C24176.11 (13)
C3—C4—C10—C5178.87 (14)C22—C23—C24—C190.5 (2)
C3—C4—C10—C90.7 (2)C20—C19—C24—C232.1 (2)
C1—C9—C10—C5176.89 (12)C12—C19—C24—C23178.65 (12)
C8—C9—C10—C52.9 (2)C17—C16—C27—C28108.6 (2)
C1—C9—C10—C42.7 (2)C15—C16—C27—C2869.9 (2)
C8—C9—C10—C4177.46 (12)C16—C27—C28—C3056.9 (2)
C2—C1—C11—O3111.13 (15)C16—C27—C28—C29178.08 (17)
C9—C1—C11—O358.87 (18)C23—C22—C31—C32108.55 (16)
C2—C1—C11—C1368.58 (17)C21—C22—C31—C3268.78 (18)
C9—C1—C11—C13121.42 (15)C22—C31—C32—C3352.40 (18)
C7—C8—C12—O4107.79 (15)C22—C31—C32—C34175.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O4i0.952.343.2716 (18)167
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC34H36O4
Mr508.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)18.5280 (4), 7.83885 (15), 20.2304 (4)
β (°) 103.642 (1)
V3)2855.33 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.60 × 0.40 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.714, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
50913, 5237, 3838
Rint0.052
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.12
No. of reflections5237
No. of parameters350
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by a Sasagawa Scientific Research Grant from the Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationSasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.  Web of Science CSD CrossRef IUCr Journals
First citationSasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596.  CSD CrossRef IUCr Journals
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds