[Journal logo]

Volume 68 
Part 12 
Pages m1521-m1522  
December 2012  

Received 31 October 2012
Accepted 16 November 2012
Online 24 November 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.005 Å
Disorder in main residue
R = 0.049
wR = 0.140
Data-to-parameter ratio = 17.5
Details
Open access

Pentakis([mu]3-N,2-dioxidobenzene-1-carboximidato)di-[mu]2-formato-pentakis(1H-imidazole)methanolpentamanganese(III)manganese(II)-methanol-water (1/3.36/0.65)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA
Correspondence e-mail: cmzaleski@ship.edu

The title compound, [Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH3OH)]·3.36CH3OH·0.65H2O, or Mn(II)(O2CH)2[15-MCMn(III)N(shi)-5](Im)5(MeOH)·3.36MeOH·0.65H2O (where MC is metallacrown, shi3- is salicylhydroximate, Im is imidazole and MeOH is methanol), contains five MnIII ions as members of the metallacrown ring and an MnII atom bound in the central cavity. The central MnII atom is seven-coordinate with a geometry best described as between face-capped trigonal-prismatic and face-capped octahedral. Three MnIII ions of the metallacrown ring are six-coordinate with distorted octahedral geometries. Of these six-coordinate MnIII ions, two have mirror-plane configurations, while the other has a [Delta] absolute stereoconfiguration. The remaining two MnIII ions have a coordination number of five with a distorted square-pyramidal geometry. The five imidazole ligands are bound to five different MnIII ions. Disorder is observed for one of the coordinating imidazole ligands, as the imidazole ligand is disordered over two alternative mutually exclusive positions in a ratio of 0.672 (9) to 0.328 (9). The interstitial voids between the main molecules that constitute the structure are mostly filled with methanol molecules that form hydrogen-bonded chains. Some of the sites of the non-coordinated methanol molecules are not fully occupied, with the remainder of the volume either empty or taken up by ill-defined close to amorphous content. One site was refined as being taken up by either two or one methanol molecules, with an occupancy ratio of 0.628 (5) to 0.343 (5). This disorder might thus be correlated with the disorder of the imidazole ring (an N-H...O hydrogen bond between the major moieties of the imidazole and the methanol molecules is observed). On the other side of the disordered imidazole ring the chain of partially occupied methanol molecules originates that extends via O-H...O hydrogen bonds to the metal-coordinated methanol molecule. The three partially occupied methanol molecules were refined to be disordered with two water molecules to take two residual electron density peaks into account (the exact nature of these weak residual electron density peaks cannot be deduced from the X-ray diffraction data alone, the assignment as water is tentative). The occupancy rate for the methanol molecules refined to 0.480 (7). The occupancy rate of the two water molecules refined to 0.34 (1) and 0.31 (2) for each site.

Related literature

For a general review of metallacrowns, see: Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and related synthetic procedures, see: Kessissoglou et al. (1994[Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.]); Dendrinou-Samara et al. (2001[Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.], 2002[Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.], 2005[Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.]); Emerich et al. (2010[Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.]); Tigyer et al. (2011[Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.]). For an explanation on how to calculate [tau], see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For an explanation on how to calculate the s/h ratio, see: Stiefel & Brown (1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C7H4NO3)5(CHO2)2(C3H4N2)5(CH4O)]·3.36CH4O·0.65H2O

  • Mr = 1662.43

  • Monoclinic, P 21 /c

  • a = 13.2053 (12) Å

  • b = 24.621 (2) Å

  • c = 21.491 (2) Å

  • [beta] = 101.861 (1)°

  • V = 6838.0 (11) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.16 mm-1

  • T = 100 K

  • 0.45 × 0.38 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.619, Tmax = 0.746

  • 87486 measured reflections

  • 17626 independent reflections

  • 14038 reflections with I > 2[sigma](I)

  • Rint = 0.044

Refinement
  • R[F2 > 2[sigma](F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.05

  • 17626 reflections

  • 1006 parameters

  • 26 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 2.17 e Å-3

  • [Delta][rho]min = -0.59 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C44-H44...O11 0.95 2.47 3.413 (4) 173
C47-H47...N14 0.95 2.68 3.599 (5) 162
C51-H51A...O18 0.98 2.50 3.360 (4) 147
N7-H7...O25B 0.88 1.88 2.658 (9) 147
N9-H9...O17i 0.88 2.07 2.898 (3) 156
N11-H11A...O14ii 0.88 2.00 2.869 (3) 168
N13-H13A...O2iii 0.88 1.99 2.827 (4) 159
N15-H15...O8iv 0.88 1.96 2.800 (4) 159
N7B-H7B...O21 0.88 2.11 2.933 (15) 155
O20-H20A...O22v 0.85 (2) 1.85 (2) 2.681 (5) 168 (5)
O20-H20A...O22Bv 0.85 (2) 1.96 (4) 2.75 (3) 155 (4)
O22-H22A...O24 0.84 1.97 2.746 (7) 154
O24-H24A...O21 0.84 2.03 2.808 (6) 154
O25B-H25A...O23B 0.84 1.91 2.601 (9) 138
O22B-H22C...O21Bvi 0.84 2.48 3.29 (4) 160
O23-H23...O12vii 0.84 2.19 2.828 (9) 133
O23B-H23B...O12vii 0.84 2.08 2.897 (6) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+2, -z+1; (vii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and CELL_NOW (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2012[Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2457 ).


Acknowledgements

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13-08 to BRT and CMZ). The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491, and by YSU. The authors would like to thank George M. Sheldrick for providing access to the beta version of SHELXL2012 prior to its official release.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  [CrossRef]
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89-96.  [ISI] [PubMed] [ChemPort]
Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864-875.  [ISI] [PubMed] [ChemPort]
Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041-5051.  [CrossRef] [PubMed] [ChemPort]
Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769-777.  [ISI] [CSD] [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.  [ISI] [CrossRef] [details]
Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379-1391.  [ChemPort]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.  [ISI] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
Sheldrick, G. M. (2012). SHELXL2012. University of Göttingen, Germany.
Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.  [CrossRef] [ChemPort] [ISI]
Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041-m1042.  [CSD] [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, m1521-m1522   [ doi:10.1107/S1600536812047228 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.