organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2,3-Dihy­dr­oxy­benzyl­­idene]-2-meth­­oxy­benzohydrazide

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia, cFaculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, 42300, Selangor, Malaysia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 5 October 2012; accepted 10 October 2012; online 3 November 2012)

The title compound, C15H14N2O4 adopts an E conformation about the azomethine double bond. Intra­molecular N—H⋯O and O—H⋯N hydrogen bonds generate S(6) rings and help to establish the molecular conformation. The dihedral angle between the benzene rings is 17.84 (10)°. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds into a two-dimensional network with a herring-bone pattern arranged parallel to the bc plane.

Related literature

For applications and the biological activity of Schiff bases, see: Panneerselvam et al. (2009[Panneerselvam, P., Rather, B. A., Reddy, D. R. S. & Kumar, R. N. (2009). Eur. J. Med. Chem. 44, 2328-2333.]); Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Jarahpour et al. (2007[Jarahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules. 12, 1720-1730.]). For related structures, see: Baharudin et al. (2012[Baharudin, M. S., Taha, M., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012). Acta Cryst. E68, o3255.]); Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Orthorhombic, P b c a

  • a = 14.1479 (17) Å

  • b = 8.6567 (11) Å

  • c = 22.570 (3) Å

  • V = 2764.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.56 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.996

  • 15288 measured reflections

  • 2574 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.03

  • 2574 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.91 (2) 1.90 (2) 2.608 (2) 133 (2)
O3—H3A⋯O1i 0.90 (3) 1.75 (3) 2.631 (2) 167 (2)
O4—H4A⋯N2 0.85 (2) 1.89 (2) 2.658 (2) 151 (2)
C8—H8A⋯O3ii 0.93 2.33 3.189 (2) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases represent an important group of organic compounds with a wide range of medicinal applications (Panneerselvam et al., 2009; Khan et al., 2009; Jarahpour et al., 2007). The title Schiff base was synthesize as a part of our ongoing resaerch to study different bioactive organic compounds.

The bond lengths and angle in the title compound (Fig. 1) are similar to the corresponding bond lengths and bond angles reported in structurally realted Schiff bases (Taha et al., 2012; Promdet et al., 2011). The E configuration of azomethine oelfinic bond is stabilized by two intramolecular N1—H1A···O2, O4—H4A···N2 hydrogen bonds. O3—H3A···O1 and C8—H8A···O3 hydrogen bonds play important roles in stabilizing the crystal structure by forming a two-dimensional-network arranged parallel to the bc plane in a zig zag fashion (Table 2 and Fig. 2).

Related literature top

For applications and the biological activity of Schiff bases, see: Panneerselvam et al. (2009); Khan et al. (2009); Jarahpour et al. (2007). For related structures, see: Baharudin et al. (2012); Taha et al. (2012); Promdet et al. (2011).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-methoxybenzohydrazide (0.332 g, 2 mmol) and 2,3-dihydroxybenzaldehyde (0.276 g, 2 mmol) in methanol (40 ml) along with a catalytical amount of acetic acid for 3 hr. The progress of reaction was monitored by TLC. After completion of reaction, the solvent was evaporated under reduced vacuum to afford crude product which was recrystallized by dissolving in methanol at room temperature to obtain pure needles (0.458 g, 80% yield). All chemicals were purchased by sigma Aldrich Germany.

Refinement top

H atoms on methyl and phenyl C-atoms were positioned geometrically with C—H = 0.96 and 0.93 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(methyl) 1.2Ueq(aryl). The H atoms on the nitrogen and oxygen atoms were located from difference Fourier maps and refined isotropically. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme and N—-H···O and O—H···N intramolecular hydrogen bonds (dotted lines). Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—-H···O and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
N'-[(E)-2,3-Dihydroxybenzylidene]-2-methoxybenzohydrazide top
Crystal data top
C15H14N2O4F(000) = 1200
Mr = 286.28Dx = 1.376 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1873 reflections
a = 14.1479 (17) Åθ = 2.9–22.2°
b = 8.6567 (11) ŵ = 0.10 mm1
c = 22.570 (3) ÅT = 273 K
V = 2764.2 (6) Å3Plate, colorles
Z = 80.56 × 0.18 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2574 independent reflections
Radiation source: fine-focus sealed tube1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1517
Tmin = 0.945, Tmax = 0.996k = 1010
15288 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1101P]
where P = (Fo2 + 2Fc2)/3
2574 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14N2O4V = 2764.2 (6) Å3
Mr = 286.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1479 (17) ŵ = 0.10 mm1
b = 8.6567 (11) ÅT = 273 K
c = 22.570 (3) Å0.56 × 0.18 × 0.04 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1658 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.996Rint = 0.042
15288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.14 e Å3
2574 reflectionsΔρmin = 0.15 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14939 (10)0.02998 (18)0.40701 (6)0.0774 (5)
O20.43755 (10)0.00963 (18)0.38297 (7)0.0813 (5)
O30.04853 (10)0.35880 (19)0.18114 (7)0.0812 (5)
H3A0.0756 (18)0.407 (3)0.1500 (12)0.124 (11)*
O40.04345 (10)0.21110 (17)0.26425 (7)0.0705 (4)
H4A0.0826 (17)0.178 (3)0.2896 (11)0.106 (9)*
N10.26779 (14)0.08816 (19)0.35803 (7)0.0591 (5)
H1A0.3313 (16)0.098 (3)0.3523 (9)0.087 (8)*
N20.20663 (11)0.16136 (18)0.31942 (7)0.0569 (4)
C10.26911 (17)0.1677 (2)0.48710 (9)0.0752 (6)
H1B0.20440.16590.49430.090*
C20.3267 (2)0.2513 (3)0.52416 (10)0.0900 (7)
H2B0.30110.30490.55600.108*
C30.4220 (2)0.2550 (3)0.51384 (11)0.0924 (8)
H3B0.46110.31150.53890.111*
C40.46035 (17)0.1762 (3)0.46702 (10)0.0793 (7)
H4B0.52520.18010.46030.095*
C50.40271 (15)0.0908 (2)0.42963 (9)0.0628 (5)
C60.30501 (15)0.0859 (2)0.43918 (8)0.0575 (5)
C70.23441 (15)0.0071 (2)0.40039 (8)0.0576 (5)
C80.24524 (13)0.2483 (2)0.28070 (8)0.0572 (5)
H8A0.31060.25910.28090.069*
C90.19093 (12)0.3307 (2)0.23652 (8)0.0498 (5)
C100.23670 (14)0.4340 (2)0.19876 (8)0.0623 (5)
H10A0.30150.44920.20260.075*
C110.18796 (15)0.5134 (2)0.15615 (9)0.0661 (6)
H11A0.21940.58290.13170.079*
C120.09193 (14)0.4901 (2)0.14946 (8)0.0585 (5)
H12A0.05880.54370.12040.070*
C130.04530 (13)0.3880 (2)0.18569 (8)0.0532 (5)
C140.09401 (12)0.3093 (2)0.23002 (7)0.0494 (5)
C150.53330 (16)0.0285 (3)0.36517 (11)0.0872 (7)
H15A0.54440.02920.32950.131*
H15B0.54580.13590.35810.131*
H15C0.57430.00860.39590.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (10)0.1019 (12)0.0724 (10)0.0083 (8)0.0062 (7)0.0100 (8)
O20.0576 (10)0.0926 (11)0.0937 (11)0.0069 (8)0.0005 (8)0.0279 (9)
O30.0449 (9)0.1000 (12)0.0987 (12)0.0024 (7)0.0091 (8)0.0351 (10)
O40.0515 (9)0.0821 (10)0.0779 (10)0.0071 (7)0.0010 (7)0.0256 (8)
N10.0526 (11)0.0636 (11)0.0611 (10)0.0055 (9)0.0122 (9)0.0064 (9)
N20.0563 (10)0.0587 (10)0.0558 (10)0.0057 (8)0.0112 (8)0.0083 (8)
C10.0884 (17)0.0784 (15)0.0588 (13)0.0058 (13)0.0001 (12)0.0060 (12)
C20.123 (2)0.0840 (17)0.0635 (15)0.0011 (17)0.0016 (15)0.0123 (13)
C30.120 (2)0.0834 (17)0.0741 (16)0.0164 (17)0.0178 (15)0.0069 (14)
C40.0828 (17)0.0764 (15)0.0787 (15)0.0075 (12)0.0191 (13)0.0026 (14)
C50.0692 (15)0.0594 (12)0.0597 (12)0.0002 (11)0.0112 (11)0.0026 (11)
C60.0672 (14)0.0543 (11)0.0512 (12)0.0023 (10)0.0087 (10)0.0108 (10)
C70.0594 (14)0.0605 (12)0.0528 (12)0.0033 (10)0.0059 (10)0.0153 (10)
C80.0467 (11)0.0611 (11)0.0638 (12)0.0008 (10)0.0078 (10)0.0143 (11)
C90.0457 (11)0.0503 (10)0.0533 (11)0.0015 (8)0.0004 (8)0.0113 (9)
C100.0489 (12)0.0679 (13)0.0700 (13)0.0115 (10)0.0054 (10)0.0082 (11)
C110.0723 (14)0.0613 (13)0.0648 (13)0.0153 (11)0.0126 (11)0.0012 (11)
C120.0644 (13)0.0547 (11)0.0565 (11)0.0022 (10)0.0021 (10)0.0014 (10)
C130.0439 (11)0.0541 (11)0.0616 (12)0.0017 (9)0.0016 (9)0.0011 (10)
C140.0465 (11)0.0487 (10)0.0531 (11)0.0023 (8)0.0063 (9)0.0007 (9)
C150.0601 (15)0.0902 (17)0.1112 (19)0.0038 (12)0.0052 (13)0.0059 (15)
Geometric parameters (Å, º) top
O1—C71.228 (2)C4—C51.387 (3)
O2—C51.359 (2)C4—H4B0.9300
O2—C151.422 (2)C5—C61.400 (3)
O3—C131.355 (2)C6—C71.493 (3)
O3—H3A0.90 (3)C8—C91.447 (2)
O4—C141.353 (2)C8—H8A0.9300
O4—H4A0.85 (2)C9—C141.392 (2)
N1—C71.348 (2)C9—C101.395 (2)
N1—N21.382 (2)C10—C111.368 (3)
N1—H1A0.91 (2)C10—H10A0.9300
N2—C81.276 (2)C11—C121.382 (3)
C1—C21.373 (3)C11—H11A0.9300
C1—C61.389 (3)C12—C131.373 (2)
C1—H1B0.9300C12—H12A0.9300
C2—C31.368 (3)C13—C141.393 (2)
C2—H2B0.9300C15—H15A0.9600
C3—C41.370 (3)C15—H15B0.9600
C3—H3B0.9300C15—H15C0.9600
C5—O2—C15120.34 (17)N2—C8—C9122.37 (17)
C13—O3—H3A113.0 (17)N2—C8—H8A118.8
C14—O4—H4A104.7 (17)C9—C8—H8A118.8
C7—N1—N2120.55 (18)C14—C9—C10118.61 (17)
C7—N1—H1A120.2 (14)C14—C9—C8122.01 (16)
N2—N1—H1A119.1 (14)C10—C9—C8119.38 (17)
C8—N2—N1115.74 (17)C11—C10—C9121.16 (19)
C2—C1—C6121.7 (2)C11—C10—H10A119.4
C2—C1—H1B119.1C9—C10—H10A119.4
C6—C1—H1B119.1C10—C11—C12119.95 (18)
C3—C2—C1119.5 (2)C10—C11—H11A120.0
C3—C2—H2B120.2C12—C11—H11A120.0
C1—C2—H2B120.2C13—C12—C11120.08 (18)
C2—C3—C4120.7 (2)C13—C12—H12A120.0
C2—C3—H3B119.7C11—C12—H12A120.0
C4—C3—H3B119.7O3—C13—C12123.07 (17)
C3—C4—C5120.1 (2)O3—C13—C14116.58 (17)
C3—C4—H4B119.9C12—C13—C14120.34 (17)
C5—C4—H4B119.9O4—C14—C9123.01 (16)
O2—C5—C4122.3 (2)O4—C14—C13117.13 (16)
O2—C5—C6117.50 (17)C9—C14—C13119.84 (16)
C4—C5—C6120.2 (2)O2—C15—H15A109.5
C1—C6—C5117.72 (19)O2—C15—H15B109.5
C1—C6—C7116.4 (2)H15A—C15—H15B109.5
C5—C6—C7125.77 (19)O2—C15—H15C109.5
O1—C7—N1121.88 (19)H15A—C15—H15C109.5
O1—C7—C6120.7 (2)H15B—C15—H15C109.5
N1—C7—C6117.45 (19)
C7—N1—N2—C8179.58 (16)C5—C6—C7—N111.4 (3)
C6—C1—C2—C30.2 (3)N1—N2—C8—C9178.90 (14)
C1—C2—C3—C40.0 (4)N2—C8—C9—C146.0 (3)
C2—C3—C4—C50.4 (4)N2—C8—C9—C10174.56 (16)
C15—O2—C5—C49.8 (3)C14—C9—C10—C110.1 (3)
C15—O2—C5—C6170.20 (18)C8—C9—C10—C11179.55 (16)
C3—C4—C5—O2179.4 (2)C9—C10—C11—C120.9 (3)
C3—C4—C5—C60.6 (3)C10—C11—C12—C130.3 (3)
C2—C1—C6—C50.1 (3)C11—C12—C13—O3179.38 (18)
C2—C1—C6—C7176.70 (19)C11—C12—C13—C141.1 (3)
O2—C5—C6—C1179.52 (17)C10—C9—C14—O4179.63 (16)
C4—C5—C6—C10.5 (3)C8—C9—C14—O40.2 (3)
O2—C5—C6—C74.1 (3)C10—C9—C14—C131.2 (2)
C4—C5—C6—C7175.94 (17)C8—C9—C14—C13178.16 (16)
N2—N1—C7—O11.4 (3)O3—C13—C14—O40.1 (2)
N2—N1—C7—C6178.09 (14)C12—C13—C14—O4179.65 (16)
C1—C6—C7—O18.4 (3)O3—C13—C14—C9178.57 (16)
C5—C6—C7—O1168.06 (18)C12—C13—C14—C91.9 (3)
C1—C6—C7—N1172.13 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.91 (2)1.90 (2)2.608 (2)133 (2)
O3—H3A···O1i0.90 (3)1.75 (3)2.631 (2)167 (2)
O4—H4A···N20.85 (2)1.89 (2)2.658 (2)151 (2)
C8—H8A···O3ii0.932.333.189 (2)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)14.1479 (17), 8.6567 (11), 22.570 (3)
V3)2764.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.945, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
15288, 2574, 1658
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.03
No. of reflections2574
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.91 (2)1.90 (2)2.608 (2)133 (2)
O3—H3A···O1i0.90 (3)1.75 (3)2.631 (2)167 (2)
O4—H4A···N20.85 (2)1.89 (2)2.658 (2)151 (2)
C8—H8A···O3ii0.932.333.189 (2)152.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

References

First citationBaharudin, M. S., Taha, M., Ismail, N. H., Shah, S. A. A. & Yousuf, S. (2012). Acta Cryst. E68, o3255.  CSD CrossRef IUCr Journals
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationJarahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules. 12, 1720–1730.  Web of Science PubMed
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationPanneerselvam, P., Rather, B. A., Reddy, D. R. S. & Kumar, R. N. (2009). Eur. J. Med. Chem. 44, 2328–2333.  Web of Science CrossRef PubMed CAS
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Yousuf, S. (2012). Acta Cryst. E68, o2846.  CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds