[Journal logo]

Volume 68 
Part 12 
Page o3345  
December 2012  

Received 26 October 2012
Accepted 8 November 2012
Online 14 November 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
R = 0.045
wR = 0.128
Data-to-parameter ratio = 18.4
Details
Open access

4'-Methyl-14',19'-dioxa-4'-azaspiro[acenaphthylene-1,5'-tetracyclo[18.4.0.02,6.08,13]tetracosane]-1'(24'),8',10',12',20',22'-hexaene-2,7'(1H)-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: shirai2011@gmail.com

In the title compound, C33H29NO4, the acenaphthylene ring system is essentially planar (r.m.s. deviation = 0.0290 Å). The pyrrolidine ring adopts a C-envelope conformation with a C atom displaced by 0.671 (2) Å from the mean-plane formed by the remaining ring atoms. The pyrrolidine ring is fused to acenaphthylene ring system making a dihedral angle of 88.0 (7)°. In the crystal, molecules are linked into R22(9) dimers via C-H...N and C-H...O hydrogen bonds. Two C atoms act as donors to the same O atom acceptor, resulting in the formation of R21(7) ring motifs. These two motifs combine to form hydrogen-bonded sheets running along the a- and b-axis directions.

Related literature

For background to natural and synthetic pharmacologically active pyrrolidines, see: Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]). For related structures, see: Augustine et al. (2010[Augustine, T., Vithiya, S. M., Ignacimuthu, S. & Ramkumar, V. (2010). Acta Cryst. E66, o3002.]); Narayanan et al. (2012[Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C33H29NO4

  • Mr = 503.57

  • Monoclinic, P 21 /c

  • a = 11.248 (2) Å

  • b = 16.609 (3) Å

  • c = 14.037 (3) Å

  • [beta] = 92.965 (6)°

  • V = 2618.8 (9) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 24740 measured reflections

  • 6363 independent reflections

  • 4183 reflections with I > 2[sigma](I)

  • Rint = 0.035

Refinement
  • R[F2 > 2[sigma](F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.01

  • 6363 reflections

  • 345 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.22 e Å-3

  • [Delta][rho]min = -0.21 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C9-H9...N1i 0.93 2.62 3.535 (3) 167
C15-H15...O1i 0.93 2.50 3.414 (2) 168
C27-H27B...O2ii 0.97 2.48 3.403 (2) 158
C29-H29...O2ii 0.93 2.57 3.450 (2) 159
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2602 ).


Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

References

Augustine, T., Vithiya, S. M., Ignacimuthu, S. & Ramkumar, V. (2010). Acta Cryst. E66, o3002.  [CSD] [CrossRef] [details]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Narayanan, S., Srinivasan, T., Purushothaman, S., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, o3345.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Waldmann, H. (1995). Synlett, pp. 133-141.  [CrossRef]


Acta Cryst (2012). E68, o3345  [ doi:10.1107/S1600536812046144 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.