organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholine–4-nitro­phenol (1/2)

aDepartment of Physics, Anna University, Chennai 600 025, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 31 October 2012; accepted 16 November 2012; online 24 November 2012)

In the title adduct, 2C6H5NO3·C4H9NO, the morpholine ring adopts a chair conformation. The dihedral angle between the two nitro­phenol rings is 69.47 (9)°. The nitro groups attached to the benzene rings make dihedral angles of 3.37 (16) and 3.14 (13)° in the two mol­ecules of nitro­phenol. The crystal structure is stabilized by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds and further consolidated by C—H⋯O inter­actions, resulting in a three-dimensional network.

Related literature

For the biological activity and synthesis of 4-(4-nitro­phen­yl)–morpholine derivatives, see: Wang et al. (2010[Wang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem.. 53, 4367-4378.]). For a related structure, see: Wang et al. (2012[Wang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H5NO3·C4H9NO

  • Mr = 365.34

  • Monoclinic, P 21 /c

  • a = 18.0381 (7) Å

  • b = 5.5673 (2) Å

  • c = 17.4910 (7) Å

  • β = 91.606 (3)°

  • V = 1755.82 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.973

  • 16662 measured reflections

  • 4354 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.05

  • 4354 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O7i 0.77 (2) 2.46 (2) 3.000 (2) 129 (2)
N3—H3B⋯O4ii 0.77 (2) 2.36 (2) 3.032 (2) 147 (2)
C14—H14B⋯O4ii 0.97 2.55 3.322 (3) 136
O3—H3A⋯O6 0.82 1.77 2.590 (2) 173
O6—H6A⋯N3 0.82 1.93 2.607 (2) 140
C6—H6⋯O2iii 0.93 2.53 3.424 (3) 161
C14—H14A⋯O5iv 0.97 2.49 3.403 (3) 157
C15—H15B⋯O1v 0.97 2.48 3.400 (3) 159
C16—H16B⋯O2vi 0.97 2.56 3.441 (3) 152
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) [-x, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-(4-Nitrophenyl)morpholine derivatives are of great importance due to their anticancer activity (Wang et al., 2010). The title adduct is a key intermediate in the synthetic investigations of antitumor drugs. We report the preparation and crystal structure of the title adduct in this paper.

In the title adduct (Fig. 1), the morpholine ring adopts a chair conformation. The dihedral angle between the two nitrophenol rings is 69.47 (9)°. The nitro group attached with the benzene ring (C1–C6) makes a dihedral angle of 3.37 (16)°, while the other nitro group attached with the other benzene ring (C7–C12) makes a dihedral angle of 3.14 (13)°. The crystal structure is stabilzied by intermolecular interactions of the types N—H···O and O—H···O and further consolidated by C—H···O intermolcular hydrogen bonds (Tab. 1 & Fig. 2) resulting in a 3-dimensional network.

Related literature top

For the biological activity and synthesis of 4-(4-nitrophenyl)–morpholine derivatives, see: Wang et al. (2010). For a related structure, see: Wang et al. (2012).

Experimental top

Morpholine and 4-Nitrophenol were taken in equimolar (1:1) ratio using ethanol as solvent. The solution was filtered in a clean beaker and optimally closed. The solution was kept at room temperature. After two weeks, a product was obtained which was subsequently recrystallised from ethanol resulting in yellow coloured crystals suitable for X-ray diffraction.

Refinement top

All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.97 Å, for aryl and methylene H-atoms, respectively. The hydroxyl H-atoms were included at geometrically calculated positions with O—H = 0.82 Å. The H-atom bonded to N3 was located from a difference map and allowed to refine freely. The Uiso(H) were allowed at 1.5Ueq(O) or 1.2Ueq(C/N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
Morpholine–4-nitrophenol (1/2) top
Crystal data top
2C6H5NO3·C4H9NOF(000) = 768
Mr = 365.34Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4354 reflections
a = 18.0381 (7) Åθ = 1.1–28.4°
b = 5.5673 (2) ŵ = 0.11 mm1
c = 17.4910 (7) ÅT = 293 K
β = 91.606 (3)°Block, colourless
V = 1755.82 (12) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4354 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.4°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2424
Tmin = 0.963, Tmax = 0.973k = 77
16662 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
4354 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
2C6H5NO3·C4H9NOV = 1755.82 (12) Å3
Mr = 365.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0381 (7) ŵ = 0.11 mm1
b = 5.5673 (2) ÅT = 293 K
c = 17.4910 (7) Å0.35 × 0.30 × 0.25 mm
β = 91.606 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2987 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.973Rint = 0.027
16662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
4354 reflectionsΔρmin = 0.30 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53902 (9)0.5777 (3)0.10103 (10)0.0565 (4)
C20.55081 (10)0.3693 (4)0.14223 (11)0.0648 (5)
H20.59820.30480.14740.078*
C30.49232 (10)0.2585 (4)0.17542 (12)0.0659 (5)
H30.50010.11910.20380.079*
C40.42092 (10)0.3533 (3)0.16694 (10)0.0560 (4)
C50.41037 (10)0.5620 (3)0.12451 (11)0.0616 (5)
H50.36300.62600.11830.074*
C60.46899 (10)0.6747 (4)0.09170 (11)0.0628 (5)
H60.46170.81480.06350.075*
C70.13017 (10)0.8918 (3)0.31527 (9)0.0553 (4)
C80.09076 (10)0.7063 (4)0.28005 (10)0.0588 (4)
H80.04040.68750.28840.071*
C90.12639 (9)0.5524 (3)0.23317 (10)0.0539 (4)
H90.09960.42940.20930.065*
C100.20240 (9)0.5739 (3)0.21978 (9)0.0469 (4)
C110.24071 (10)0.7647 (4)0.25620 (10)0.0585 (4)
H110.29110.78450.24830.070*
C120.20488 (11)0.9213 (3)0.30297 (10)0.0624 (5)
H120.23081.04700.32640.075*
C130.11073 (9)0.0465 (3)0.07932 (11)0.0572 (4)
H13A0.06920.15720.08010.069*
H13B0.11640.02470.12980.069*
C140.09471 (11)0.1474 (3)0.02155 (12)0.0629 (5)
H14A0.05130.23720.03640.076*
H14B0.08390.07500.02800.076*
C150.21931 (12)0.1788 (4)0.00757 (13)0.0739 (6)
H15A0.20900.10400.05680.089*
H15B0.26000.29070.01340.089*
C160.24145 (10)0.0101 (3)0.04962 (11)0.0594 (5)
H16A0.25530.06540.09790.071*
H16B0.28410.09730.03170.071*
N10.60131 (9)0.6983 (4)0.06695 (11)0.0732 (5)
N20.09282 (13)1.0491 (3)0.36639 (9)0.0775 (5)
O70.15556 (8)0.3055 (2)0.01578 (9)0.0733 (4)
O10.66276 (8)0.6053 (4)0.07188 (11)0.1022 (6)
O20.59056 (10)0.8873 (4)0.03293 (13)0.1106 (7)
O30.36561 (7)0.2375 (3)0.20120 (9)0.0792 (4)
H3A0.32650.30930.19290.119*
O40.12927 (12)1.2119 (3)0.39774 (9)0.1007 (6)
O50.02664 (12)1.0156 (4)0.37853 (11)0.1164 (7)
O60.23640 (6)0.4276 (2)0.17466 (7)0.0620 (3)
H6A0.20680.32870.15720.093*
N30.17917 (8)0.1798 (2)0.06111 (9)0.0483 (3)
H3B0.1748 (10)0.258 (3)0.0250 (11)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0503 (9)0.0618 (10)0.0574 (10)0.0096 (8)0.0024 (7)0.0051 (9)
C20.0521 (9)0.0705 (12)0.0714 (12)0.0183 (9)0.0053 (8)0.0017 (10)
C30.0634 (11)0.0604 (11)0.0731 (13)0.0134 (9)0.0087 (9)0.0083 (10)
C40.0527 (9)0.0558 (10)0.0592 (10)0.0030 (8)0.0059 (8)0.0037 (8)
C50.0475 (9)0.0645 (11)0.0726 (12)0.0143 (8)0.0027 (8)0.0050 (10)
C60.0583 (10)0.0596 (11)0.0708 (12)0.0160 (8)0.0045 (9)0.0081 (9)
C70.0746 (11)0.0519 (9)0.0389 (8)0.0103 (8)0.0055 (7)0.0029 (7)
C80.0534 (9)0.0688 (11)0.0541 (10)0.0030 (8)0.0013 (7)0.0060 (9)
C90.0514 (9)0.0542 (9)0.0560 (10)0.0084 (7)0.0001 (7)0.0106 (8)
C100.0504 (8)0.0497 (8)0.0404 (8)0.0022 (7)0.0026 (6)0.0002 (7)
C110.0559 (9)0.0685 (11)0.0510 (10)0.0146 (8)0.0030 (7)0.0055 (9)
C120.0846 (13)0.0552 (10)0.0467 (9)0.0163 (9)0.0113 (9)0.0067 (8)
C130.0520 (9)0.0584 (10)0.0615 (10)0.0025 (8)0.0093 (8)0.0002 (8)
C140.0641 (11)0.0514 (10)0.0733 (12)0.0119 (8)0.0015 (9)0.0043 (9)
C150.0754 (13)0.0680 (12)0.0786 (14)0.0166 (10)0.0104 (10)0.0227 (11)
C160.0511 (9)0.0648 (11)0.0628 (11)0.0035 (8)0.0099 (8)0.0092 (9)
N10.0579 (9)0.0808 (12)0.0816 (12)0.0131 (8)0.0145 (8)0.0011 (10)
N20.1161 (16)0.0702 (11)0.0454 (9)0.0301 (11)0.0100 (9)0.0105 (8)
O70.0931 (10)0.0374 (6)0.0891 (10)0.0001 (6)0.0031 (8)0.0037 (6)
O10.0543 (8)0.1261 (15)0.1269 (14)0.0210 (9)0.0169 (8)0.0207 (12)
O20.0830 (11)0.0936 (12)0.1573 (18)0.0169 (10)0.0437 (11)0.0417 (13)
O30.0595 (8)0.0772 (9)0.1010 (11)0.0002 (7)0.0000 (7)0.0206 (9)
O40.1836 (19)0.0604 (9)0.0576 (9)0.0131 (11)0.0061 (10)0.0163 (7)
O50.1010 (14)0.1490 (18)0.0994 (13)0.0500 (13)0.0057 (11)0.0458 (13)
O60.0515 (6)0.0723 (8)0.0619 (7)0.0003 (6)0.0010 (5)0.0193 (7)
N30.0595 (8)0.0377 (7)0.0476 (8)0.0013 (6)0.0029 (6)0.0053 (6)
Geometric parameters (Å, º) top
C1—C21.379 (3)C12—H120.9300
C1—C61.379 (2)C13—N31.483 (2)
C1—N11.451 (2)C13—C141.501 (3)
C2—C31.366 (3)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.396 (2)C14—O71.413 (2)
C3—H30.9300C14—H14A0.9700
C4—O31.343 (2)C14—H14B0.9700
C4—C51.389 (3)C15—O71.419 (3)
C5—C61.369 (3)C15—C161.498 (3)
C5—H50.9300C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—C121.380 (3)C16—N31.486 (2)
C7—C81.388 (3)C16—H16A0.9700
C7—N21.433 (2)C16—H16B0.9700
C8—C91.360 (2)N1—O21.222 (2)
C8—H80.9300N1—O11.224 (2)
C9—C101.403 (2)N2—O51.233 (3)
C9—H90.9300N2—O41.238 (2)
C10—O61.2998 (19)O3—H3A0.8200
C10—C111.409 (2)O6—H6A0.8200
C11—C121.370 (3)N3—H3B0.77 (2)
C11—H110.9300
C2—C1—C6121.24 (17)N3—C13—C14111.17 (14)
C2—C1—N1119.60 (16)N3—C13—H13A109.4
C6—C1—N1119.16 (17)C14—C13—H13A109.4
C3—C2—C1119.50 (16)N3—C13—H13B109.4
C3—C2—H2120.2C14—C13—H13B109.4
C1—C2—H2120.2H13A—C13—H13B108.0
C2—C3—C4120.37 (18)O7—C14—C13111.16 (15)
C2—C3—H3119.8O7—C14—H14A109.4
C4—C3—H3119.8C13—C14—H14A109.4
O3—C4—C5123.20 (16)O7—C14—H14B109.4
O3—C4—C3117.78 (17)C13—C14—H14B109.4
C5—C4—C3119.02 (17)H14A—C14—H14B108.0
C6—C5—C4120.76 (16)O7—C15—C16111.09 (16)
C6—C5—H5119.6O7—C15—H15A109.4
C4—C5—H5119.6C16—C15—H15A109.4
C5—C6—C1119.10 (18)O7—C15—H15B109.4
C5—C6—H6120.4C16—C15—H15B109.4
C1—C6—H6120.4H15A—C15—H15B108.0
C12—C7—C8120.62 (16)N3—C16—C15110.39 (15)
C12—C7—N2120.17 (18)N3—C16—H16A109.6
C8—C7—N2119.19 (18)C15—C16—H16A109.6
C9—C8—C7119.44 (17)N3—C16—H16B109.6
C9—C8—H8120.3C15—C16—H16B109.6
C7—C8—H8120.3H16A—C16—H16B108.1
C8—C9—C10121.85 (16)O2—N1—O1121.97 (19)
C8—C9—H9119.1O2—N1—C1118.97 (16)
C10—C9—H9119.1O1—N1—C1119.05 (19)
O6—C10—C9121.87 (15)O5—N2—O4122.6 (2)
O6—C10—C11120.85 (15)O5—N2—C7119.3 (2)
C9—C10—C11117.26 (15)O4—N2—C7118.1 (2)
C12—C11—C10121.06 (17)C14—O7—C15110.39 (14)
C12—C11—H11119.5C4—O3—H3A109.5
C10—C11—H11119.5C10—O6—H6A109.5
C11—C12—C7119.76 (16)C13—N3—C16110.35 (13)
C11—C12—H12120.1C13—N3—H3B113.2 (14)
C7—C12—H12120.1C16—N3—H3B108.0 (14)
C6—C1—C2—C31.0 (3)C10—C11—C12—C70.4 (3)
N1—C1—C2—C3178.82 (18)C8—C7—C12—C110.7 (3)
C1—C2—C3—C40.8 (3)N2—C7—C12—C11177.62 (17)
C2—C3—C4—O3179.62 (18)N3—C13—C14—O756.0 (2)
C2—C3—C4—C50.2 (3)O7—C15—C16—N357.5 (2)
O3—C4—C5—C6179.03 (19)C2—C1—N1—O2177.4 (2)
C3—C4—C5—C60.4 (3)C6—C1—N1—O22.4 (3)
C4—C5—C6—C10.3 (3)C2—C1—N1—O14.0 (3)
C2—C1—C6—C50.4 (3)C6—C1—N1—O1176.2 (2)
N1—C1—C6—C5179.37 (18)C12—C7—N2—O5177.76 (19)
C12—C7—C8—C90.1 (3)C8—C7—N2—O50.6 (3)
N2—C7—C8—C9178.17 (17)C12—C7—N2—O41.0 (3)
C7—C8—C9—C100.6 (3)C8—C7—N2—O4179.30 (17)
C8—C9—C10—O6179.63 (17)C13—C14—O7—C1560.4 (2)
C8—C9—C10—C110.8 (3)C16—C15—O7—C1461.5 (2)
O6—C10—C11—C12179.10 (16)C14—C13—N3—C1651.7 (2)
C9—C10—C11—C120.3 (3)C15—C16—N3—C1352.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O7i0.77 (2)2.46 (2)3.000 (2)129 (2)
N3—H3B···O4ii0.77 (2)2.36 (2)3.032 (2)147 (2)
C14—H14B···O4ii0.972.553.322 (3)136
O3—H3A···O60.821.772.590 (2)173
O6—H6A···N30.821.932.607 (2)140
C6—H6···O2iii0.932.533.424 (3)161
C14—H14A···O5iv0.972.493.403 (3)157
C15—H15B···O1v0.972.483.400 (3)159
C16—H16B···O2vi0.972.563.441 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z; (iv) x, y3/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H5NO3·C4H9NO
Mr365.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.0381 (7), 5.5673 (2), 17.4910 (7)
β (°) 91.606 (3)
V3)1755.82 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.963, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
16662, 4354, 2987
Rint0.027
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.05
No. of reflections4354
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O7i0.77 (2)2.46 (2)3.000 (2)129 (2)
N3—H3B···O4ii0.77 (2)2.36 (2)3.032 (2)147 (2)
C14—H14B···O4ii0.972.553.322 (3)136
O3—H3A···O60.821.772.590 (2)173
O6—H6A···N30.821.932.607 (2)140
C6—H6···O2iii0.932.533.424 (3)161
C14—H14A···O5iv0.972.493.403 (3)157
C15—H15B···O1v0.972.483.400 (3)159
C16—H16B···O2vi0.972.563.441 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2; (iii) x+1, y+2, z; (iv) x, y3/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+1, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and TS also thanks the DST for an Inspire fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem.. 53, 4367–4378.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds