organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(4-Chloro­phen­yl)-1,3-selenazol-4-yl]methanol

aShandong Provincial Key Laboratory of Chemical Energy Storage, and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: jchcui@163.com

(Received 2 November 2012; accepted 22 November 2012; online 28 November 2012)

In the title compound, C10H8ClNOSe, the dihedral angle between benzene and selenazole rings is 11.4 (3)° and the hy­droxy­methyl group is bent from the selenazole ring, making a dihedral angle of 63.8 (3)°. In the crystal, mol­ecules are linked into inversion dimers by pairs of O—H⋯N hydrogen bonds. Roof-tile-like stacking of the mol­ecules along [010] [b = 4.5707 (4) Å] is observed, with the benzene and selenazole rings separated by a face-to-face distance of 3.57 Å and a mutual slippage of 2.85 Å.

Related literature

For the synthesis of 1,3-selenazoles and their biological activity, see: Shafiee et al. (1979[Shafiee, A., Mazloumi, A. & Cohen, V. I. (1979). J. Heterocycl. Chem. 16, 1563-1566.]); Koketsu & Ishihara (2003[Koketsu, M. & Ishihara, H. (2003). Curr. Org. Chem. 7, 175-185.]); Geisler et al. (2004[Geisler, K., Künzler, A., Below, H., Bulka, E., Pfeiffer, W.-D. & Langer, P. (2004). Synthesis, pp. 97-105.]). For crystal structures of 1,3-selenazole derivatives, see: Shen et al. (2011[Shen, J.-B., Lv, X., Chen, J.-F., Zhou, Y.-F. & Zhao, G.-L. (2011). Acta Cryst. E67, o803.]); Shi & Zhao, (2007[Shi, X. & Zhao, G.-L. (2007). Acta Cryst. E63, o3642.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClNOSe

  • Mr = 272.58

  • Monoclinic, P 21 /c

  • a = 14.8150 (15) Å

  • b = 4.5707 (4) Å

  • c = 14.9123 (14) Å

  • β = 96.642 (1)°

  • V = 1003.01 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.97 mm−1

  • T = 298 K

  • 0.35 × 0.32 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.337, Tmax = 0.587

  • 4466 measured reflections

  • 1742 independent reflections

  • 1318 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.01

  • 1742 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.07 2.891 (5) 174
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It has well been confirmed that selenium-containing heterocyclic compounds are of considerable biochemical and pharmacological relevance. Thus, derivatives of selenazole have been extensively studied not only because of their interesting reactivities but also because of their pharmaceutical applications (Koketsu & Ishihara, 2003; Geisler et al., 2004). Interested in this field, the title compound, a derivative of selenazole, was prepared and its crystal structure presented (Fig. 1). In the title compound, C10H8NOClSe, the dihedral angle between the nearly planar benzene and selenazole rings is 11.4 (3)°. The dihedral angle between the selenazole ring and the hydroxymethyl group, defined by C9—C10–O1, is 63.8 (3)°. All the bond lengths and angles are normal and correspond to those observed in the related compounds (Shen et al., 2011; Shi & Zhao, 2007). In the crystal structure, pairs of molecules are disposed about an inversion center, generating dimers linked by intermolecular O—H···N hydrogen bonds (Fig. 2 and Table 1). The aromatic parts of the molecules are stacked along [010] (b = 4.5707 (4) Å) in a roof tile-like fashion enabling slipped π-π-stacking interactions. The face-to-face distance of the aromatic parts of the molecules (Se1, N1, C1 – C9) is 3.57 Å and their slippage 2.85 Å approximately parallel to the ring-to-ring bond C4—C7 (Fig. 2). This brings Cl1 in a position above/below the ring centroid of an adjacent benzene ring (Cl···centroid (C1 – C6) = 3.68 Å).

Related literature top

For the synthesis of 1,3-selenazoles and their biological activity, see: Shafiee et al. (1979); Koketsu & Ishihara (2003); Geisler et al. (2004). For crystal structures of 1,3-selenazole derivatives, see: Shen et al. (2011); Shi & Zhao, (2007).

Experimental top

2-(4-Chlorophenyl)-4-chloromethyl-1,3-selenazole (0.01 mol) (Shafiee et al., 1979) was added to dilute sulfuric acid (75 ml, 3.5 mol L-1) and heated at reflux for 8 h. The solution was made alkaline with dilute sodium hydroxide and extracted with chloroform. The organic layer was dried with Na2SO4, filtered, and evaporated and the obtained solid was recrystallized from ethanol. Clear block-shaped crystals were obtained.

Refinement top

C-bonded H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.93 and 0.97 Å, Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was refined with AFIX 147 of program SHELXL97 (Sheldrick, 2008), O—H = 0.82 Å, Uĩso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound indicating H-bonds by dashed lines and π-π-stacking by red double arrows (see Table 1 and text).
[2-(4-Chlorophenyl)-1,3-selenazol-4-yl]methanol top
Crystal data top
C10H8ClNOSeF(000) = 536
Mr = 272.58Dx = 1.805 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1928 reflections
a = 14.8150 (15) Åθ = 2.8–27.1°
b = 4.5707 (4) ŵ = 3.97 mm1
c = 14.9123 (14) ÅT = 298 K
β = 96.642 (1)°Block, white
V = 1003.01 (16) Å30.35 × 0.32 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1742 independent reflections
Radiation source: fine-focus sealed tube1318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
π and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1517
Tmin = 0.337, Tmax = 0.587k = 55
4466 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
1742 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C10H8ClNOSeV = 1003.01 (16) Å3
Mr = 272.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8150 (15) ŵ = 3.97 mm1
b = 4.5707 (4) ÅT = 298 K
c = 14.9123 (14) Å0.35 × 0.32 × 0.15 mm
β = 96.642 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1742 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1318 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.587Rint = 0.059
4466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
1742 reflectionsΔρmin = 0.45 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.74166 (3)0.13939 (10)0.30636 (3)0.0423 (2)
Cl10.93843 (9)1.0498 (3)0.66855 (9)0.0586 (4)
O10.4348 (2)0.0090 (8)0.3910 (2)0.0465 (8)
H10.41490.02970.43960.070*
N10.6330 (2)0.1313 (7)0.4388 (2)0.0313 (8)
C10.8698 (3)0.8234 (9)0.5942 (3)0.0394 (11)
C20.7838 (3)0.7563 (10)0.6124 (3)0.0401 (11)
H20.76120.83500.66280.048*
C30.7307 (3)0.5702 (9)0.5551 (3)0.0352 (10)
H30.67220.52320.56720.042*
C40.7644 (3)0.4523 (9)0.4790 (2)0.0308 (10)
C50.8507 (3)0.5313 (11)0.4624 (3)0.0410 (11)
H50.87350.45890.41120.049*
C60.9042 (4)0.7147 (11)0.5196 (3)0.0503 (13)
H60.96260.76370.50780.060*
C70.7083 (3)0.2511 (9)0.4200 (2)0.0285 (9)
C80.6372 (3)0.0813 (9)0.2973 (3)0.0373 (11)
H80.61710.19890.24810.045*
C90.5933 (3)0.0506 (9)0.3712 (2)0.0293 (9)
C100.5071 (3)0.2087 (10)0.3850 (3)0.0410 (11)
H10A0.49120.34170.33490.049*
H10B0.51670.32360.43990.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0457 (4)0.0490 (4)0.0337 (3)0.0017 (2)0.0118 (2)0.0033 (2)
Cl10.0543 (9)0.0538 (9)0.0629 (8)0.0135 (6)0.0131 (6)0.0081 (6)
O10.037 (2)0.060 (2)0.0427 (18)0.0018 (18)0.0058 (15)0.0102 (16)
N10.034 (2)0.029 (2)0.0299 (17)0.0012 (16)0.0013 (15)0.0014 (14)
C10.042 (3)0.031 (3)0.042 (2)0.002 (2)0.008 (2)0.0014 (19)
C20.049 (3)0.037 (3)0.034 (2)0.008 (2)0.005 (2)0.0008 (19)
C30.027 (3)0.041 (3)0.039 (2)0.004 (2)0.0053 (19)0.0034 (19)
C40.035 (3)0.029 (2)0.028 (2)0.0021 (19)0.0035 (18)0.0047 (16)
C50.027 (3)0.046 (3)0.052 (3)0.002 (2)0.013 (2)0.009 (2)
C60.036 (3)0.047 (3)0.069 (3)0.004 (2)0.010 (3)0.005 (3)
C70.030 (3)0.029 (2)0.0265 (19)0.0094 (19)0.0022 (17)0.0039 (17)
C80.040 (3)0.039 (3)0.032 (2)0.004 (2)0.0018 (19)0.0006 (18)
C90.027 (2)0.029 (2)0.030 (2)0.0053 (18)0.0034 (18)0.0012 (17)
C100.042 (3)0.039 (3)0.039 (2)0.007 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Se1—C81.839 (5)C3—H30.9300
Se1—C71.889 (4)C4—C51.378 (6)
Cl1—C11.753 (4)C4—C71.463 (6)
O1—C101.419 (6)C5—C61.380 (6)
O1—H10.8200C5—H50.9300
N1—C71.303 (5)C6—H60.9300
N1—C91.383 (5)C8—C91.350 (6)
C1—C21.367 (6)C8—H80.9300
C1—C61.370 (6)C9—C101.502 (6)
C2—C31.385 (6)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.399 (5)
C8—Se1—C784.78 (19)C1—C6—C5118.8 (5)
C10—O1—H1109.5C1—C6—H6120.6
C7—N1—C9113.5 (4)C5—C6—H6120.6
C2—C1—C6121.5 (4)N1—C7—C4125.2 (4)
C2—C1—Cl1119.6 (4)N1—C7—Se1113.5 (3)
C6—C1—Cl1118.9 (4)C4—C7—Se1121.3 (3)
C1—C2—C3119.5 (4)C9—C8—Se1111.3 (3)
C1—C2—H2120.3C9—C8—H8124.3
C3—C2—H2120.3Se1—C8—H8124.3
C2—C3—C4120.4 (4)C8—C9—N1116.9 (4)
C2—C3—H3119.8C8—C9—C10123.9 (4)
C4—C3—H3119.8N1—C9—C10119.1 (4)
C5—C4—C3118.1 (4)O1—C10—C9111.1 (4)
C5—C4—C7122.0 (4)O1—C10—H10A109.4
C3—C4—C7119.9 (4)C9—C10—H10A109.4
C6—C5—C4121.8 (4)O1—C10—H10B109.4
C6—C5—H5119.1C9—C10—H10B109.4
C4—C5—H5119.1H10A—C10—H10B108.0
C6—C1—C2—C31.1 (7)C3—C4—C7—N111.4 (6)
Cl1—C1—C2—C3178.0 (3)C5—C4—C7—Se111.1 (6)
C1—C2—C3—C40.2 (7)C3—C4—C7—Se1169.0 (3)
C2—C3—C4—C51.1 (6)C8—Se1—C7—N10.0 (3)
C2—C3—C4—C7178.7 (4)C8—Se1—C7—C4179.7 (3)
C3—C4—C5—C61.7 (7)C7—Se1—C8—C90.3 (3)
C7—C4—C5—C6178.2 (5)Se1—C8—C9—N10.6 (5)
C2—C1—C6—C50.6 (7)Se1—C8—C9—C10178.4 (3)
Cl1—C1—C6—C5178.5 (4)C7—N1—C9—C80.6 (5)
C4—C5—C6—C10.8 (7)C7—N1—C9—C10178.6 (4)
C9—N1—C7—C4180.0 (4)C8—C9—C10—O1117.4 (4)
C9—N1—C7—Se10.3 (4)N1—C9—C10—O164.8 (5)
C5—C4—C7—N1168.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.072.891 (5)174
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H8ClNOSe
Mr272.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.8150 (15), 4.5707 (4), 14.9123 (14)
β (°) 96.642 (1)
V3)1003.01 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.97
Crystal size (mm)0.35 × 0.32 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.337, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
4466, 1742, 1318
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.01
No. of reflections1742
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.072.891 (5)173.6
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We acknowledge the National Natural Foundation of China (21105042), the National Basic Research Program (2010CB234601) and the Natural Science Foundation of Shandong Province (ZR2011BM007, ZR2010BQ021) for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGeisler, K., Künzler, A., Below, H., Bulka, E., Pfeiffer, W.-D. & Langer, P. (2004). Synthesis, pp. 97–105.  CrossRef
First citationKoketsu, M. & Ishihara, H. (2003). Curr. Org. Chem. 7, 175–185.  Web of Science CrossRef CAS
First citationShafiee, A., Mazloumi, A. & Cohen, V. I. (1979). J. Heterocycl. Chem. 16, 1563-1566.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShen, J.-B., Lv, X., Chen, J.-F., Zhou, Y.-F. & Zhao, G.-L. (2011). Acta Cryst. E67, o803.  Web of Science CSD CrossRef IUCr Journals
First citationShi, X. & Zhao, G.-L. (2007). Acta Cryst. E63, o3642.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds