supplementary materials


qm2087 scheme

Acta Cryst. (2012). E68, m1458    [ doi:10.1107/S1600536812044625 ]

{6,6'-Dimethoxy-2,2'-[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}copper(II) monohydrate

C. Hu, S. Zhao, X. Lü and R. Lu

Abstract top

In the title compound, [Cu(C22H24N2O4)]·H2O, the CuII atom is four-coordinated in a distorted planar geometry with a mean deviation of 0.1164 (2) Å for the plane generated by the ligating atoms of the salen-type Schiff base ligand. In the crystal, O(water)-H...O and C-H...O hydrogen bonds form a three-dimensional-network.

Comment top

Salen Schiff-bases and their metal complexes are of interest due to their biological activity, as well as their optical, catalytic, chromophoric, thermochromic and photochromic properties. Here we report the crystal structure of a salen-type Schiff-base copper complex, Fig. 1. The title compound crystallized with one independent molecule and one water molecule in the asymmetric unit. Each of the Cu atoms is in an almost planar coordination geometry and is close to the plane defined by the four ligating atoms (N1, N2, O2, O3) of the Schiff-base ligand. Fig. 2 shows the packing diagram along the crystallographic c axis.

Related literature top

For the synthetic method, see: Marinovich et al. (1999). For related structures, see: Tang (2009); Ji & Lu (2010).

Experimental top

The compound was prepared according to previous reported method of Marinovich (1999). Crystals suitable for the X-ray diffraction study were obtained upon recrystallization from N,N-dimethylformamide and water.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 times Ueq(C).Water H atoms were located in a difference-Fourier synthesis and refined with constraint O—H = 0.82 Å, H—H distance 1.35 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of (I), viewing from c axis direction.
{6,6'-Dimethoxy-2,2'-[cyclohexane-1,2- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) monohydrate top
Crystal data top
[Cu(C22H24N2O4)]·H2OF(000) = 964
Mr = 462.00Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5789 reflections
a = 11.2116 (13) Åθ = 1.9–25.3°
b = 10.5256 (12) ŵ = 1.10 mm1
c = 18.171 (7) ÅT = 296 K
β = 106.185 (2)°Block, dark green
V = 2059.4 (9) Å30.38 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3670 independent reflections
Radiation source: fine-focus sealed tube2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
thin–slice ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1311
Tmin = 0.736, Tmax = 0.794k = 128
10265 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7087P]
where P = (Fo2 + 2Fc2)/3
3670 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C22H24N2O4)]·H2OV = 2059.4 (9) Å3
Mr = 462.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2116 (13) ŵ = 1.10 mm1
b = 10.5256 (12) ÅT = 296 K
c = 18.171 (7) Å0.38 × 0.24 × 0.21 mm
β = 106.185 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2859 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.794Rint = 0.048
10265 measured reflectionsθmax = 25.1°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.30 e Å3
3670 reflectionsAbsolute structure: ?
279 parametersFlack parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14977 (4)0.96825 (4)0.16126 (2)0.03146 (16)
N20.2322 (3)1.0281 (3)0.08566 (17)0.0313 (7)
O30.0574 (2)0.8409 (2)0.09541 (14)0.0360 (6)
O20.0640 (2)0.9319 (2)0.23616 (14)0.0395 (6)
N10.2692 (3)1.0751 (3)0.23096 (17)0.0339 (7)
C150.2008 (3)0.9961 (3)0.0149 (2)0.0336 (9)
H15A0.23631.04180.01750.040*
C210.0524 (3)0.8231 (3)0.0229 (2)0.0313 (8)
C80.2583 (3)1.1234 (3)0.2941 (2)0.0344 (9)
H8A0.32001.17870.32070.041*
O40.0811 (3)0.6552 (3)0.02914 (16)0.0543 (8)
C70.0660 (3)1.0045 (3)0.2949 (2)0.0354 (9)
C170.0985 (3)0.8705 (4)0.0979 (2)0.0393 (9)
H17A0.13950.92010.12550.047*
C140.3202 (3)1.1341 (3)0.1158 (2)0.0328 (8)
H14A0.27151.21260.11020.039*
C200.0255 (3)0.7221 (3)0.0167 (2)0.0379 (9)
O10.1149 (3)0.8971 (3)0.29982 (16)0.0559 (8)
C90.3749 (3)1.1096 (4)0.2019 (2)0.0363 (9)
H9A0.41321.18780.22700.044*
C60.1570 (3)1.0974 (3)0.3262 (2)0.0355 (9)
C160.1160 (3)0.8963 (3)0.0194 (2)0.0305 (8)
C20.0302 (4)0.9896 (4)0.3321 (2)0.0437 (10)
C190.0380 (4)0.6995 (4)0.0931 (2)0.0422 (10)
H19A0.08810.63290.11760.051*
C220.1678 (4)0.5579 (4)0.0063 (3)0.0573 (12)
H22A0.20060.51850.03160.086*
H22B0.12640.49510.02860.086*
H22C0.23460.59490.04550.086*
C30.0340 (4)1.0629 (4)0.3934 (3)0.0576 (12)
H3A0.09811.05160.41600.069*
C40.0569 (4)1.1547 (4)0.4227 (3)0.0609 (13)
H4A0.05341.20420.46440.073*
C180.0231 (4)0.7747 (4)0.1342 (2)0.0440 (10)
H18A0.01250.75970.18610.053*
C50.1502 (4)1.1707 (4)0.3898 (2)0.0449 (10)
H5A0.21111.23140.40940.054*
C10.2129 (4)0.8727 (5)0.3334 (3)0.0675 (14)
H1A0.26520.80660.30540.101*
H1B0.26100.94860.33190.101*
H1C0.17870.84660.38570.101*
C100.4703 (3)1.0043 (4)0.2179 (2)0.0451 (10)
H10A0.43010.92460.19880.054*
H10B0.50630.99610.27280.054*
C120.5193 (4)1.0508 (4)0.0944 (2)0.0541 (12)
H12A0.58551.07230.07180.065*
H12B0.48170.97210.07130.065*
C110.5734 (4)1.0312 (5)0.1797 (2)0.0578 (12)
H11A0.61891.10660.20220.069*
H11B0.63110.96040.18860.069*
C130.4228 (4)1.1548 (4)0.0767 (2)0.0450 (10)
H13A0.38591.15900.02170.054*
H13B0.46301.23570.09320.054*
O50.8238 (3)0.7829 (4)0.1442 (2)0.1052 (14)
HW10.85570.83780.17790.158*
HW20.87130.71940.15550.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0307 (3)0.0376 (3)0.0278 (3)0.0044 (2)0.01097 (19)0.0017 (2)
N20.0276 (16)0.0347 (17)0.0322 (18)0.0001 (14)0.0095 (14)0.0021 (14)
O30.0388 (15)0.0395 (15)0.0308 (15)0.0073 (11)0.0113 (12)0.0041 (11)
O20.0434 (16)0.0465 (16)0.0312 (15)0.0097 (12)0.0146 (13)0.0041 (12)
N10.0298 (17)0.0430 (18)0.0304 (18)0.0042 (14)0.0108 (14)0.0013 (14)
C150.028 (2)0.044 (2)0.030 (2)0.0034 (16)0.0099 (17)0.0053 (17)
C210.028 (2)0.034 (2)0.030 (2)0.0105 (16)0.0041 (16)0.0012 (16)
C80.037 (2)0.034 (2)0.030 (2)0.0010 (17)0.0071 (18)0.0015 (16)
O40.0599 (19)0.0530 (18)0.054 (2)0.0270 (15)0.0217 (16)0.0120 (15)
C70.035 (2)0.044 (2)0.027 (2)0.0064 (17)0.0082 (17)0.0058 (17)
C170.038 (2)0.051 (3)0.030 (2)0.0096 (19)0.0106 (18)0.0013 (18)
C140.032 (2)0.033 (2)0.033 (2)0.0032 (16)0.0100 (17)0.0052 (16)
C200.035 (2)0.035 (2)0.044 (3)0.0029 (17)0.0099 (19)0.0040 (19)
O10.0469 (18)0.079 (2)0.0491 (19)0.0161 (16)0.0258 (15)0.0005 (16)
C90.030 (2)0.047 (2)0.035 (2)0.0065 (17)0.0123 (17)0.0061 (18)
C60.035 (2)0.041 (2)0.029 (2)0.0036 (17)0.0070 (17)0.0018 (17)
C160.027 (2)0.034 (2)0.030 (2)0.0075 (16)0.0090 (16)0.0016 (16)
C20.040 (2)0.057 (3)0.037 (2)0.000 (2)0.016 (2)0.005 (2)
C190.035 (2)0.042 (2)0.044 (3)0.0041 (18)0.0027 (19)0.0119 (19)
C220.051 (3)0.048 (3)0.068 (3)0.017 (2)0.009 (2)0.001 (2)
C30.057 (3)0.081 (4)0.047 (3)0.005 (3)0.033 (2)0.000 (2)
C40.071 (3)0.074 (3)0.046 (3)0.007 (3)0.031 (3)0.013 (2)
C180.040 (2)0.057 (3)0.031 (2)0.010 (2)0.0042 (19)0.009 (2)
C50.053 (3)0.049 (3)0.035 (2)0.005 (2)0.017 (2)0.0049 (19)
C10.043 (3)0.112 (4)0.054 (3)0.007 (3)0.025 (2)0.016 (3)
C100.036 (2)0.059 (3)0.038 (2)0.0092 (19)0.0068 (19)0.0102 (19)
C120.041 (2)0.081 (3)0.046 (3)0.000 (2)0.020 (2)0.000 (2)
C110.036 (2)0.089 (3)0.049 (3)0.009 (2)0.013 (2)0.007 (2)
C130.041 (2)0.055 (3)0.041 (3)0.016 (2)0.014 (2)0.0015 (19)
O50.083 (3)0.152 (4)0.093 (3)0.045 (3)0.045 (2)0.037 (3)
Geometric parameters (Å, º) top
Cu1—O31.900 (2)C9—H9A0.9800
Cu1—O21.912 (2)C6—C51.409 (5)
Cu1—N11.928 (3)C2—C31.366 (5)
Cu1—N21.961 (3)C19—C181.393 (5)
N2—C151.280 (4)C19—H19A0.9300
N2—C141.490 (4)C22—H22A0.9600
O3—C211.317 (4)C22—H22B0.9600
O2—C71.308 (4)C22—H22C0.9600
N1—C81.292 (4)C3—C41.398 (6)
N1—C91.472 (4)C3—H3A0.9300
C15—C161.438 (5)C4—C51.353 (5)
C15—H15A0.9300C4—H4A0.9300
C21—C161.413 (5)C18—H18A0.9300
C21—C201.436 (5)C5—H5A0.9300
C8—C61.439 (5)C1—H1A0.9600
C8—H8A0.9300C1—H1B0.9600
O4—C201.367 (4)C1—H1C0.9600
O4—C221.436 (4)C10—C111.532 (5)
C7—C61.413 (5)C10—H10A0.9700
C7—C21.433 (5)C10—H10B0.9700
C17—C181.361 (5)C12—C131.510 (5)
C17—C161.411 (5)C12—C111.513 (6)
C17—H17A0.9300C12—H12A0.9700
C14—C131.527 (5)C12—H12B0.9700
C14—C91.534 (5)C11—H11A0.9700
C14—H14A0.9800C11—H11B0.9700
C20—C191.375 (5)C13—H13A0.9700
O1—C21.373 (5)C13—H13B0.9700
O1—C11.422 (4)O5—HW10.8458
C9—C101.511 (5)O5—HW20.8437
O3—Cu1—O290.74 (10)O1—C2—C7113.5 (3)
O3—Cu1—N1169.18 (11)C20—C19—C18121.0 (4)
O2—Cu1—N192.53 (11)C20—C19—H19A119.5
O3—Cu1—N293.78 (11)C18—C19—H19A119.5
O2—Cu1—N2172.77 (11)O4—C22—H22A109.5
N1—Cu1—N284.05 (12)O4—C22—H22B109.5
C15—N2—C14122.4 (3)H22A—C22—H22B109.5
C15—N2—Cu1124.6 (2)O4—C22—H22C109.5
C14—N2—Cu1112.1 (2)H22A—C22—H22C109.5
C21—O3—Cu1126.5 (2)H22B—C22—H22C109.5
C7—O2—Cu1124.5 (2)C2—C3—C4121.0 (4)
C8—N1—C9120.5 (3)C2—C3—H3A119.5
C8—N1—Cu1126.4 (2)C4—C3—H3A119.5
C9—N1—Cu1112.9 (2)C5—C4—C3119.3 (4)
N2—C15—C16126.2 (3)C5—C4—H4A120.3
N2—C15—H15A116.9C3—C4—H4A120.3
C16—C15—H15A116.9C17—C18—C19119.5 (4)
O3—C21—C16125.4 (3)C17—C18—H18A120.2
O3—C21—C20117.2 (3)C19—C18—H18A120.2
C16—C21—C20117.4 (3)C4—C5—C6121.3 (4)
N1—C8—C6124.5 (3)C4—C5—H5A119.3
N1—C8—H8A117.8C6—C5—H5A119.3
C6—C8—H8A117.8O1—C1—H1A109.5
C20—O4—C22117.5 (3)O1—C1—H1B109.5
O2—C7—C6125.4 (3)H1A—C1—H1B109.5
O2—C7—C2118.5 (3)O1—C1—H1C109.5
C6—C7—C2116.1 (3)H1A—C1—H1C109.5
C18—C17—C16121.6 (4)H1B—C1—H1C109.5
C18—C17—H17A119.2C9—C10—C11111.1 (3)
C16—C17—H17A119.2C9—C10—H10A109.4
N2—C14—C13116.3 (3)C11—C10—H10A109.4
N2—C14—C9106.6 (3)C9—C10—H10B109.4
C13—C14—C9111.1 (3)C11—C10—H10B109.4
N2—C14—H14A107.5H10A—C10—H10B108.0
C13—C14—H14A107.5C13—C12—C11112.1 (4)
C9—C14—H14A107.5C13—C12—H12A109.2
O4—C20—C19126.2 (4)C11—C12—H12A109.2
O4—C20—C21113.1 (3)C13—C12—H12B109.2
C19—C20—C21120.7 (4)C11—C12—H12B109.2
C2—O1—C1118.0 (3)H12A—C12—H12B107.9
N1—C9—C10110.3 (3)C12—C11—C10110.6 (3)
N1—C9—C14105.9 (3)C12—C11—H11A109.5
C10—C9—C14112.3 (3)C10—C11—H11A109.5
N1—C9—H9A109.4C12—C11—H11B109.5
C10—C9—H9A109.4C10—C11—H11B109.5
C14—C9—H9A109.4H11A—C11—H11B108.1
C5—C6—C7120.7 (3)C12—C13—C14112.6 (3)
C5—C6—C8117.2 (3)C12—C13—H13A109.1
C7—C6—C8122.1 (3)C14—C13—H13A109.1
C17—C16—C21119.7 (3)C12—C13—H13B109.1
C17—C16—C15117.9 (3)C14—C13—H13B109.1
C21—C16—C15122.4 (3)H13A—C13—H13B107.8
C3—C2—O1125.0 (4)HW1—O5—HW2104.7
C3—C2—C7121.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HW1···O1i0.852.242.971 (5)146
O5—HW1···O2i0.852.483.161 (4)138
C8—H8A···O3ii0.932.443.352 (4)166
C9—H9A···O2ii0.982.653.579 (5)159
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HW1···O1i0.852.242.971 (5)145.5
O5—HW1···O2i0.852.483.161 (4)137.6
C8—H8A···O3ii0.932.443.352 (4)165.9
C9—H9A···O2ii0.982.653.579 (5)158.6
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2.
Acknowledgements top

The project was supported by the National Natural Science Foundation of China (program Nos. 21103135 and 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011), the Scientific Research Program funded by Shaanxi Provincial Education Department (program No. 12 J K0622) and a grant from Xi'an University of Science and Technology (program No. 2010QDJ030).

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, m881.

Marinovich, A. F., O'Mahony, R. S., Waters, J. M. & Waters, T. N. (1999). Croat. Chem. Acta, 72, 685-703.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tang, C. (2009). Acta Cryst. E65, m317.