organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-4-(4-methylstyryl)pyridinium 4-methylbenzene­sulfonate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and cDepartment of physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 23 October 2012; accepted 26 October 2012; online 3 November 2012)

In the title salt, C15H16N+·C7H7O3S, the dihedral angle between the pyridine and benzene rings of the cation is 5.98 (18)°. In the crystal, adjacent anions and cations are linked by weak non-classical C—H⋯O hydrogen bonds and ππ inter­actions, with a centroid–centroid distance of 3.749 (2) Å.

Related literature

For mol­ecular compounds with non-linear optical properties, see: Bosshard et al. (1995[Bosshard, Ch., Sutter, K., Pretre, Ph., Hulliger, J., Florsheimer, M., Kaatz, P. & Gunter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.]); Nalwa & Miyata (1997[Nalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.]). For related structures, see: Murugavel et al. (2009[Murugavel, S., SubbiahPandi, A., Srikanth, C. & Kalainathan, S. (2009). Acta Cryst. E65, o71.]); Sivakumar et al. (2012[Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.]); Okada et al. (1990[Okada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M. & Muramatsu, R. (1990). Jpn J. Appl. Phys. 29, 1112-1115.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N+·C7H7O3S

  • Mr = 381.48

  • Monoclinic, P 21 /c

  • a = 9.1380 (6) Å

  • b = 6.4257 (5) Å

  • c = 33.884 (2) Å

  • β = 95.004 (4)°

  • V = 1982.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 295 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.964

  • 18512 measured reflections

  • 4902 independent reflections

  • 3850 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.184

  • S = 1.13

  • 4902 reflections

  • 247 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.42 3.273 (4) 152
C14—H14B⋯O1ii 0.96 2.59 3.482 (4) 155
Symmetry codes: (i) x+1, y-1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of molecular compounds with non linear optical properties which are known to exhibit applications in optoelectronic and photonic devices (Bosshard et al., 1995; Nalwa & Miyata, 1997), we determined the crystal structure of the title compound I.

The asymmetric unit of I, (Fig. 1), contains C15H16N+ cation and C7H7O3S- anion. The geometric parameters of the title compound are comparable with the similar reported structures: Murugavel et al., 2009; Sivakumar et al., 2012; Okada et al., 1990. The cation is planar - torsion angle about the double bond between the two rings in the cation, C1–C6C7–C8 is 178.2 (3)°. The benzene ring in the anion is almost planar, with the maximum deviation of 0.003 (3)Å.

In the crystal structure, the adjacent anions and cations are linked by weak non-classical C–H···O H bonds (Table 1 & Fig.2) and ππ interactions - Cg1···Cg2iii = 3.749 (2)Å, where Cg1 and Cg2 are the centroids of the rings (C1-C5/N1) and (C8-C13), respectively. Symmetry code: (iii) x, -y-1/2, z+1/2.

Related literature top

For molecular compounds with non-linear optical properties, see: Bosshard et al. (1995); Nalwa & Miyata (1997). For related structures, see: Murugavel et al. (2009); Sivakumar et al. (2012); Okada et al. (1990).

Experimental top

The title compound was synthesized by the condensation of 4-methyl-N-methyl pyridinium tosylate, which was prepared from 4-picoline (4.65 g, 5 mmol) and methyl p-toluenesulfonate (9.31 g, 5 mmol), and 4-methylbenzaldehyde (6 g, 5 mmol) in the presence of piperidine. The single crystals were grown by slow evaporation method in room temperature.

Refinement top

The H atoms were positioned geometrically and refined using riding model with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H. The components of the anisotropic displacement parameters for C7 and C8 were restrained to be equal within an effective deviation of 0.001 using DELU instruction in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I with atom labels. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of I, viewed down b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Methyl-4-(4-methylstyryl)pyridinium 4-methylbenzenesulfonate top
Crystal data top
C15H16N+·C7H7O3SF(000) = 808
Mr = 381.48Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4112 reflections
a = 9.1380 (6) Åθ = 2.2–28.4°
b = 6.4257 (5) ŵ = 0.19 mm1
c = 33.884 (2) ÅT = 295 K
β = 95.004 (4)°Block, colourless
V = 1982.0 (2) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4902 independent reflections
Radiation source: fine-focus sealed tube3850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω– and ϕ–scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.950, Tmax = 0.964k = 88
18512 measured reflectionsl = 4445
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0478P)2 + 2.5149P]
where P = (Fo2 + 2Fc2)/3
4902 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C15H16N+·C7H7O3SV = 1982.0 (2) Å3
Mr = 381.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1380 (6) ŵ = 0.19 mm1
b = 6.4257 (5) ÅT = 295 K
c = 33.884 (2) Å0.28 × 0.22 × 0.20 mm
β = 95.004 (4)°
Data collection top
Bruker Kappa APEXII
diffractometer
4902 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3850 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.964Rint = 0.031
18512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0751 restraint
wR(F2) = 0.184H-atom parameters constrained
S = 1.13Δρmax = 0.57 e Å3
4902 reflectionsΔρmin = 0.37 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8177 (3)0.1727 (5)0.32460 (9)0.0480 (7)
C20.9323 (3)0.0485 (6)0.31430 (10)0.0586 (9)
H21.02860.08730.32190.070*
C30.9059 (3)0.1293 (6)0.29319 (10)0.0557 (8)
H30.98480.21000.28670.067*
C40.6546 (3)0.0742 (5)0.29074 (9)0.0519 (7)
H40.55950.11680.28260.062*
C50.6764 (3)0.1060 (5)0.31182 (10)0.0535 (8)
H50.59590.18510.31770.064*
C60.8525 (4)0.3602 (6)0.34869 (10)0.0581 (8)
H60.95140.38950.35520.070*
C70.7580 (4)0.4879 (6)0.36164 (10)0.0562 (8)
H70.65930.46070.35450.067*
C80.7923 (4)0.6722 (5)0.38662 (9)0.0511 (7)
C90.6807 (4)0.8026 (7)0.39551 (11)0.0687 (10)
H90.58490.77250.38560.082*
C100.7073 (5)0.9779 (7)0.41889 (13)0.0780 (12)
H100.62881.06260.42420.094*
C110.8446 (5)1.0290 (6)0.43424 (10)0.0666 (10)
C120.9570 (5)0.8987 (8)0.42589 (13)0.0834 (13)
H121.05230.92820.43630.100*
C130.9312 (4)0.7257 (7)0.40249 (13)0.0757 (11)
H131.01010.64190.39720.091*
C140.7436 (4)0.3798 (5)0.25756 (10)0.0623 (9)
H14A0.72130.34170.23030.093*
H14B0.66260.45580.26660.093*
H14C0.83010.46520.26000.093*
C150.8745 (7)1.2200 (7)0.45951 (14)0.1050 (18)
H15A0.78481.29620.46110.157*
H15B0.94491.30650.44790.157*
H15C0.91271.17890.48560.157*
C160.3056 (3)0.4990 (4)0.36655 (8)0.0397 (6)
C170.3040 (4)0.6399 (5)0.39722 (10)0.0530 (8)
H170.29630.78150.39170.064*
C180.3140 (4)0.5713 (6)0.43625 (10)0.0669 (10)
H180.31340.66850.45660.080*
C190.3247 (4)0.3641 (6)0.44559 (11)0.0619 (9)
C200.3257 (5)0.2259 (6)0.41467 (12)0.0685 (10)
H200.33320.08450.42030.082*
C210.3159 (4)0.2887 (5)0.37551 (11)0.0587 (8)
H210.31630.19070.35530.070*
C220.3344 (6)0.2865 (9)0.48800 (12)0.0999 (16)
H22A0.23910.29330.49780.150*
H22B0.40190.37190.50410.150*
H22C0.36840.14500.48890.150*
N10.7693 (3)0.1908 (4)0.28160 (7)0.0447 (6)
O10.4209 (2)0.5016 (4)0.30040 (7)0.0603 (6)
O20.1565 (2)0.5055 (4)0.29878 (7)0.0611 (6)
O30.2956 (3)0.8137 (4)0.31892 (8)0.0753 (8)
S10.29376 (8)0.58894 (12)0.31685 (2)0.0444 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0485 (16)0.0467 (17)0.0488 (16)0.0024 (13)0.0038 (13)0.0100 (13)
C20.0406 (15)0.070 (2)0.065 (2)0.0036 (15)0.0044 (14)0.0021 (18)
C30.0442 (16)0.058 (2)0.066 (2)0.0095 (15)0.0092 (14)0.0037 (16)
C40.0411 (15)0.0583 (19)0.0555 (17)0.0006 (14)0.0001 (13)0.0049 (16)
C50.0463 (16)0.0573 (19)0.0573 (17)0.0138 (15)0.0063 (13)0.0017 (16)
C60.0443 (16)0.063 (2)0.067 (2)0.0036 (15)0.0009 (15)0.0071 (17)
C70.0491 (17)0.0618 (19)0.0572 (18)0.0059 (15)0.0013 (14)0.0045 (14)
C80.0536 (17)0.0527 (17)0.0471 (15)0.0037 (14)0.0054 (13)0.0111 (12)
C90.0517 (19)0.081 (3)0.073 (2)0.0037 (19)0.0066 (17)0.006 (2)
C100.077 (3)0.083 (3)0.077 (3)0.018 (2)0.017 (2)0.007 (2)
C110.098 (3)0.056 (2)0.0452 (17)0.007 (2)0.0031 (18)0.0002 (16)
C120.064 (2)0.094 (3)0.090 (3)0.015 (2)0.007 (2)0.023 (3)
C130.055 (2)0.077 (3)0.094 (3)0.0079 (19)0.0004 (19)0.020 (2)
C140.086 (3)0.0438 (18)0.0580 (19)0.0003 (17)0.0103 (17)0.0020 (15)
C150.172 (5)0.071 (3)0.070 (3)0.007 (3)0.004 (3)0.016 (2)
C160.0302 (12)0.0407 (14)0.0484 (14)0.0002 (11)0.0045 (10)0.0091 (12)
C170.0646 (19)0.0361 (15)0.0587 (18)0.0034 (14)0.0073 (15)0.0088 (14)
C180.082 (2)0.069 (2)0.0492 (18)0.005 (2)0.0062 (17)0.0137 (18)
C190.063 (2)0.067 (2)0.0559 (19)0.0052 (17)0.0040 (16)0.0039 (17)
C200.088 (3)0.0448 (18)0.071 (2)0.0081 (18)0.000 (2)0.0052 (18)
C210.075 (2)0.0398 (17)0.0613 (19)0.0021 (16)0.0046 (16)0.0086 (15)
C220.126 (4)0.109 (4)0.063 (2)0.008 (3)0.000 (3)0.017 (3)
N10.0504 (13)0.0415 (13)0.0426 (12)0.0024 (11)0.0059 (10)0.0067 (11)
O10.0446 (12)0.0814 (17)0.0565 (13)0.0081 (11)0.0131 (10)0.0025 (12)
O20.0406 (11)0.0816 (17)0.0599 (13)0.0075 (11)0.0034 (9)0.0081 (12)
O30.109 (2)0.0446 (13)0.0723 (16)0.0049 (14)0.0096 (15)0.0082 (12)
S10.0406 (4)0.0440 (4)0.0488 (4)0.0053 (3)0.0045 (3)0.0026 (3)
Geometric parameters (Å, º) top
C1—C21.385 (5)C14—N11.470 (4)
C1—C51.393 (4)C14—H14A0.9600
C1—C61.474 (5)C14—H14B0.9600
C2—C31.358 (5)C14—H14C0.9600
C2—H20.9300C15—H15A0.9600
C3—N11.336 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—N11.346 (4)C16—C171.379 (4)
C4—C51.366 (5)C16—C211.386 (4)
C4—H40.9300C16—S11.775 (3)
C5—H50.9300C17—C181.389 (5)
C6—C71.296 (5)C17—H170.9300
C6—H60.9300C18—C191.370 (5)
C7—C81.474 (5)C18—H180.9300
C7—H70.9300C19—C201.374 (5)
C8—C91.373 (5)C19—C221.517 (5)
C8—C131.378 (5)C20—C211.383 (5)
C9—C101.386 (6)C20—H200.9300
C9—H90.9300C21—H210.9300
C10—C111.357 (6)C22—H22A0.9600
C10—H100.9300C22—H22B0.9600
C11—C121.373 (6)C22—H22C0.9600
C11—C151.507 (6)O1—S11.446 (2)
C12—C131.374 (6)O2—S11.449 (2)
C12—H120.9300O3—S11.446 (3)
C13—H130.9300
C2—C1—C5116.4 (3)N1—C14—H14C109.5
C2—C1—C6118.6 (3)H14A—C14—H14C109.5
C5—C1—C6124.9 (3)H14B—C14—H14C109.5
C3—C2—C1120.9 (3)C11—C15—H15A109.5
C3—C2—H2119.5C11—C15—H15B109.5
C1—C2—H2119.5H15A—C15—H15B109.5
N1—C3—C2121.5 (3)C11—C15—H15C109.5
N1—C3—H3119.3H15A—C15—H15C109.5
C2—C3—H3119.3H15B—C15—H15C109.5
N1—C4—C5120.7 (3)C17—C16—C21118.7 (3)
N1—C4—H4119.6C17—C16—S1119.8 (2)
C5—C4—H4119.6C21—C16—S1121.5 (2)
C4—C5—C1120.8 (3)C16—C17—C18120.3 (3)
C4—C5—H5119.6C16—C17—H17119.9
C1—C5—H5119.6C18—C17—H17119.9
C7—C6—C1125.9 (3)C19—C18—C17121.7 (3)
C7—C6—H6117.0C19—C18—H18119.1
C1—C6—H6117.0C17—C18—H18119.1
C6—C7—C8126.1 (3)C18—C19—C20117.2 (3)
C6—C7—H7117.0C18—C19—C22122.4 (4)
C8—C7—H7117.0C20—C19—C22120.4 (4)
C9—C8—C13116.0 (3)C19—C20—C21122.6 (3)
C9—C8—C7119.5 (3)C19—C20—H20118.7
C13—C8—C7124.5 (3)C21—C20—H20118.7
C8—C9—C10121.7 (4)C20—C21—C16119.5 (3)
C8—C9—H9119.2C20—C21—H21120.3
C10—C9—H9119.2C16—C21—H21120.3
C11—C10—C9121.7 (4)C19—C22—H22A109.5
C11—C10—H10119.1C19—C22—H22B109.5
C9—C10—H10119.1H22A—C22—H22B109.5
C10—C11—C12117.2 (4)C19—C22—H22C109.5
C10—C11—C15122.0 (4)H22A—C22—H22C109.5
C12—C11—C15120.8 (4)H22B—C22—H22C109.5
C11—C12—C13121.2 (4)C3—N1—C4119.6 (3)
C11—C12—H12119.4C3—N1—C14120.5 (3)
C13—C12—H12119.4C4—N1—C14119.8 (3)
C12—C13—C8122.2 (4)O1—S1—O3113.58 (17)
C12—C13—H13118.9O1—S1—O2112.85 (14)
C8—C13—H13118.9O3—S1—O2113.34 (17)
N1—C14—H14A109.5O1—S1—C16104.78 (13)
N1—C14—H14B109.5O3—S1—C16106.24 (15)
H14A—C14—H14B109.5O2—S1—C16105.02 (14)
C5—C1—C2—C30.6 (5)C21—C16—C17—C180.6 (5)
C6—C1—C2—C3178.0 (3)S1—C16—C17—C18179.7 (3)
C1—C2—C3—N10.0 (5)C16—C17—C18—C190.4 (6)
N1—C4—C5—C10.4 (5)C17—C18—C19—C200.2 (6)
C2—C1—C5—C40.8 (5)C17—C18—C19—C22179.5 (4)
C6—C1—C5—C4177.7 (3)C18—C19—C20—C210.2 (6)
C2—C1—C6—C7177.8 (3)C22—C19—C20—C21179.5 (4)
C5—C1—C6—C70.6 (6)C19—C20—C21—C160.4 (6)
C1—C6—C7—C8178.2 (3)C17—C16—C21—C200.6 (5)
C6—C7—C8—C9174.9 (4)S1—C16—C21—C20179.6 (3)
C6—C7—C8—C135.5 (6)C2—C3—N1—C40.4 (5)
C13—C8—C9—C100.4 (6)C2—C3—N1—C14177.8 (3)
C7—C8—C9—C10180.0 (4)C5—C4—N1—C30.2 (5)
C8—C9—C10—C110.2 (7)C5—C4—N1—C14177.6 (3)
C9—C10—C11—C120.4 (6)C17—C16—S1—O1124.9 (2)
C9—C10—C11—C15179.7 (4)C21—C16—S1—O155.3 (3)
C10—C11—C12—C130.9 (7)C17—C16—S1—O34.4 (3)
C15—C11—C12—C13179.2 (4)C21—C16—S1—O3175.8 (3)
C11—C12—C13—C80.8 (7)C17—C16—S1—O2116.0 (3)
C9—C8—C13—C120.1 (6)C21—C16—S1—O263.8 (3)
C7—C8—C13—C12179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.423.273 (4)152
C14—H14B···O1ii0.962.593.482 (4)155
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16N+·C7H7O3S
Mr381.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.1380 (6), 6.4257 (5), 33.884 (2)
β (°) 95.004 (4)
V3)1982.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
18512, 4902, 3850
Rint0.031
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.184, 1.13
No. of reflections4902
No. of parameters247
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.423.273 (4)152
C14—H14B···O1ii0.962.593.482 (4)155
Symmetry codes: (i) x+1, y1, z; (ii) x, y1, z.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras for the data collection. MK would also like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial support (project No. 03 (1200)/EMR-II).

References

First citationBosshard, Ch., Sutter, K., Pretre, Ph., Hulliger, J., Florsheimer, M., Kaatz, P. & Gunter, P. (1995). Organic Nonlinear Optical Materials. Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon & Breach.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMurugavel, S., SubbiahPandi, A., Srikanth, C. & Kalainathan, S. (2009). Acta Cryst. E65, o71.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNalwa, H. S. & Miyata, S. (1997). In Nonlinear Optics of Organic Molecules and Polymers. Boca Raton: CRC Press.  Google Scholar
First citationOkada, S., Masaki, A., Matsuda, H., Nakanishi, H., Kato, M. & Muramatsu, R. (1990). Jpn J. Appl. Phys. 29, 1112–1115.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds