metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1490-m1491

rac-{[2-(Di­phenyl­thio­phosphan­yl)ferrocen­yl]meth­yl}tri­methyl­ammonium iodide chloro­form monosolvate

aCNRS, LCC, 205 route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France, and bUniversity Taras Shevchenko, Vladimirska st 64, 01033 Kiev, Ukraine
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 12 October 2012; accepted 7 November 2012; online 17 November 2012)

The title compound, [Fe(C5H5)(C21H24NPS)]I·CHCl3, is built up from a (ferrocenylmeth­yl)trimethyl­ammonium cation, a iodine anion and a chloro­form solvent mol­ecule, all residing in general positions. The N atom of the ammonium group is displaced by 1.182 (2) Å from the plane of the substituted cyclo­penta­dienyl (Cp) ring towards the Fe atom, whereas the C atom attached to the same Cp ring is slightly below this plane by −0.128 (2) Å. These deviations might result from weak agostic interactions between the two H atoms of the CH2 group and the Fe atom.

Related literature

For related structures containing the (ferrocen­yl)trimethyl­ammonium framework, see: Bai et al. (2011[Bai, Y., Zhang, G. Q., Dang, D. B., Qi, Z. Y. & Zhang, L. (2011). Z. Naturforsch. Teil B, 66, 549-552.]); Ballester et al. (2003[Ballester, L., Gil, A. M., Gutierrez, A., Perpinan, M. F., Sanchez, A. E., Fonari, M., Suwinska, K. & Belsky, V. (2003). Eur. J. Inorg. Chem. pp. 3034-3041.]); Blake et al. (2004[Blake, A. J., Caltagirone, C., Lippolis, V., Schröder, M. & Wilson, C. (2004). Acta Cryst. E60, m20-m21.]); Broomsgrove et al. (2010[Broomsgrove, A. E. J., Addy, D. A., Di Paolo, A., Morgan, I. R., Bresner, C., Chislett, V., Fallis, I. A., Thompson, A. L., Vidovic, D. & Aldridge, S. (2010). Inorg. Chem. 49, 157-173.]); Chohan et al. (1997[Chohan, Z. H., Howie, R. A., Wardell, J. L., Wilkens, R. & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689-2696.]); Deck et al. (2000[Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013-1024.]); Ferguson et al. (1994[Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. B50, 146-150.]); Herbstein & Kapon (2008[Herbstein, F. H. & Kapon, M. (2008). Struct. Chem. 19, 679-682.]); Hong et al. (2005[Hong, J., Tang, L.-F., Yang, Z., Zhai, Y.-P. & Nan, M. (2005). Transition Met. Chem. 30, 439-444.]); Hosmane et al. (1998[Hosmane, N. S., Franken, A., Zhang, G., Srivastava, R. R., Smith, R. Y. & Spielvogel, B. F. (1998). Main Group Met. Chem. 21, 319-324.]); Hu et al. (2004[Hu, J., Barbour, L. J. & Gokel, G. W. (2004). New J. Chem. 28, 907-911.]); Li et al. (2009[Li, Z., Liu, B., Xu, H., Xue, G., Hu, H., Fu, F. & Wang, J. (2009). J. Organomet. Chem. 694, 2210-2216.]); Malezieux et al. (1994[Malezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979-2986.]); Pullen et al. (1998[Pullen, A. E., Faulmann, C., Pokhodnya, K. I., Cassoux, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714-6720.]); Reynes et al. (2002[Reynes, O., Moutet, J.-C., Pecaut, J., Royal, G. & Saint-Aman, E. (2002). New J. Chem. 26, 9-12.]); Selvapalam et al. (2007[Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A. E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M. K., Kim, K. & Inoue, Y. (2007). Proc. Natl Acad. Sci. USA, 104, 20737-20742.]); Sharma et al. (2006[Sharma, P., Lopez, J. G., Ortega, C., Rosas, N., Cabrera, A., Alvarez, C., Toscano, A. & Reyes, E. (2006). Inorg. Chem. Commun. 9, 82-85.]); Veya & Kochi (1995[Veya, P. L. & Kochi, J. K. (1995). J. Organomet. Chem. 488, C4-C8.]); Volkov et al. (2003[Volkov, O., Rath, N. P. & Barton, L. (2003). J. Organomet. Chem. 680, 212-217.], 2005[Volkov, O., Hu, C., Kolle, V. & Paetzold, P. (2005). Z. Anorg. Allg. Chem. 631, 1909-1911.], 2006[Volkov, O., Paetzold, P. & Hu, C. (2006). Z. Anorg. Allg. Chem. 632, 945-948.]); Xu et al. (2010[Xu, H., Zhang, L., Li, Z., Li, Z., Hu, H. & Xue, G. (2010). J. Cluster Sci. 21, 211-221.]); Yongmao et al. (1982[Yongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 45-46.]); Zhuji et al. (1982[Zhuji, F., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 57-59.]). For their use in chemistry, see: Routaboul et al. (2005[Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685-2690.], 2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]); Mateus et al. (2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]); Le Roux et al. (2007[Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064-1073.]); Diab et al. (2008[Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186-5189.]); Audin et al. (2010[Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890-899.]); Debono et al. (2010[Debono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879-1882.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C21H24NPS)]I·CHCl3

  • Mr = 720.65

  • Monoclinic, P 21 /c

  • a = 17.4056 (6) Å

  • b = 12.1843 (3) Å

  • c = 14.9389 (5) Å

  • β = 110.632 (4)°

  • V = 2964.97 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 180 K

  • 0.49 × 0.18 × 0.10 mm

Data collection
  • Agilent Xcalibur (Sapphire1, long nozzle) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.574, Tmax = 1.0

  • 31103 measured reflections

  • 6065 independent reflections

  • 5385 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.08

  • 6065 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24C⋯I1 0.98 3.05 4.001 (3) 163
C100—H100⋯I1 1.00 2.93 3.810 (3) 147

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Recently, our group has synthesized various chiral enantiomerically pure ferrocenyl ligands and tested them in different catalytic asymmetric reactions (Routaboul et al., 2005; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Diab et al., 2008; Audin et al., 2010; Debono et al., 2010). These ligands are synthesized from enantiomerically pure 2-(diphenylthiophosphanyl)(hydroxymethyl)ferrocene. One intermediate in the synthesis of such enantiomerically pure building block is the racemic (2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide (Mateus et al., 2006).

The asymmetric unit is built up from the (ferrocenylmethyl)trimethylammonium cation, the iodine anion and a chloroform molecule as solvate (Fig. 1). Except for the occurrence of the chloroform solvate, the structure is closely related to the one reported by Ferguson et al. (1994). However, in their case, the iodine was in weak interaction with one of the H atom of the bridging CH2 group whereas in our case the shortest interactions with the iodine involved one of the methyl of the ammonium and the H atom of the chloroform (Table 1). The phosphorus, P1 atom, is roughly in the plane of the Cp ring to which it is attached deviating only by -0.013 (1) Å whereas the sulfur, S1, is endo located -0.887 (1) Å below the Cp ring.

In the Cambridge Structural Database (CSD version 5.33, 2011; Allen, 2002), there are, to the best of our knowledge, 34 hits corresponding to structures involving the (ferrocenylmethyl)trimethylammonium cation with different counter ions. A comparison of selected distances and angles within the Cp—C-NMe3 framework is reported in supplementary materials. Surprisingly, there is no real influence of the counter ion on the geometry of this framework. In all compounds the bridging C sp3 atom is always endo with respect to the Cp ring to which it is attached with values ranging from -0.07 to -0.426 Å, whereas the ammonium N atom is always exo with values ranging from 0.999 to 1.914 Å. Surprisingly, these two extreme values are related to compound containing a very large anion, the (µ12-phosphato)-tetracosakis(µ2-oxo)-dodecaoxo-molybdenum(v)-undeca-molybdenum(vi) (Li et al., 2009). However, it is worthwhile to note that the asymmetric unit in this polyoxomolybdate anions contains four molecules of which two of them have distance of the N from the Cp ring within the usual range: 1.248 and 1.152 Å. Moreover there are other compounds containing polyoxomolybdate anions (Xu et al., 2010; Li et al. 2009) for which the values are within the normal range. So, these two extreme values might be the consequence of crystal packing which should accommodate four molecules within the asymetric unit.

Related literature top

For related structures containing the (ferrocenyl)trimethylammonium framework, see: Bai et al. (2011); Ballester et al. (2003); Blake et al. (2004); Broomsgrove et al. (2010); Chohan et al. (1997); Deck et al. (2000); Ferguson et al. (1994); Herbstein & Kapon (2008); Hong et al. (2005); Hosmane et al. (1998); Hu et al. (2004); Li et al. (2009); Malezieux et al. (1994); Pullen et al. (1998); Reynes et al. (2002); Selvapalam et al. (2007); Sharma et al. (2006); Veya & Kochi (1995); Volkov et al. (2003, 2005, 2006); Xu et al. (2010); Yongmao et al. (1982); Zhuji et al. (1982). For their use in chemistry, see: Routaboul et al. (2005, 2007); Mateus et al. (2006); Le Roux et al. (2007); Diab et al. (2008); Audin et al. (2010); Debono et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

(2-diphenylthiophosphanylferrocenyl) trimethylammonium iodide was synthesized by a published procedure (Mateus et al., 2006). Single crystals suitable for X-ray diffraction analysis were grown from a chloroform solution by slow evaporation of the solvent.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 1.0 Å (methine) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular view of compound I with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
rac-{[2-(Diphenylthiophosphanyl)ferrocenyl]methyl}trimethylammonium iodide chloroform monosolvate top
Crystal data top
[Fe(C5H5)(C21H24NPS)]I·CHCl3F(000) = 1440
Mr = 720.65Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19830 reflections
a = 17.4056 (6) Åθ = 2.9–28.4°
b = 12.1843 (3) ŵ = 1.96 mm1
c = 14.9389 (5) ÅT = 180 K
β = 110.632 (4)°Box, yellow
V = 2964.97 (18) Å30.49 × 0.18 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur (Sapphire1, long nozzle)
diffractometer
6065 independent reflections
Radiation source: fine-focus sealed tube5385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.574, Tmax = 1.0l = 1818
31103 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.8471P]
where P = (Fo2 + 2Fc2)/3
6065 reflections(Δ/σ)max = 0.002
319 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Fe(C5H5)(C21H24NPS)]I·CHCl3V = 2964.97 (18) Å3
Mr = 720.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.4056 (6) ŵ = 1.96 mm1
b = 12.1843 (3) ÅT = 180 K
c = 14.9389 (5) Å0.49 × 0.18 × 0.10 mm
β = 110.632 (4)°
Data collection top
Agilent Xcalibur (Sapphire1, long nozzle)
diffractometer
6065 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5385 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 1.0Rint = 0.034
31103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
6065 reflectionsΔρmin = 0.61 e Å3
319 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2012)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.170301 (18)0.73893 (3)0.16941 (2)0.01825 (7)
P10.13712 (3)0.49498 (4)0.25844 (4)0.01734 (11)
S10.13878 (4)0.39785 (5)0.15519 (4)0.02843 (13)
N10.38708 (12)0.51750 (17)0.26266 (14)0.0266 (4)
C10.19359 (13)0.62039 (17)0.26970 (14)0.0173 (4)
C20.26568 (13)0.64348 (18)0.24522 (15)0.0196 (4)
C30.28607 (14)0.75593 (19)0.26702 (16)0.0242 (5)
H30.33070.79350.25810.029*
C40.22953 (15)0.80223 (19)0.30379 (16)0.0253 (5)
H40.22970.87620.32410.030*
C50.17231 (14)0.72073 (17)0.30565 (15)0.0211 (4)
H50.12740.73070.32700.025*
C60.06407 (17)0.7065 (2)0.05634 (18)0.0407 (7)
H60.02440.65190.05370.049*
C70.13415 (18)0.6930 (2)0.03003 (17)0.0367 (6)
H70.15000.62730.00700.044*
C80.17626 (15)0.7942 (2)0.04407 (16)0.0292 (5)
H80.22530.80890.03190.035*
C90.13258 (15)0.8694 (2)0.07938 (17)0.0309 (5)
H90.14710.94390.09540.037*
C100.06381 (16)0.8155 (3)0.08696 (18)0.0377 (6)
H100.02390.84730.10900.045*
C210.30886 (13)0.57269 (19)0.19659 (15)0.0231 (5)
H21A0.32300.61800.14960.028*
H21B0.27040.51490.16050.028*
C230.42053 (19)0.4499 (3)0.2013 (2)0.0448 (7)
H23A0.47070.41270.24170.067*
H23B0.43310.49750.15540.067*
H23C0.37970.39500.16670.067*
C240.36912 (17)0.4455 (2)0.3336 (2)0.0409 (7)
H24A0.32530.39390.29990.061*
H24B0.35160.49070.37720.061*
H24C0.41870.40450.37030.061*
C250.45051 (16)0.6000 (2)0.3157 (2)0.0396 (6)
H25A0.43020.64290.35810.059*
H25B0.46180.64910.26990.059*
H25C0.50110.56190.35370.059*
C1110.17654 (13)0.43111 (17)0.37555 (15)0.0186 (4)
C1120.23704 (14)0.47914 (18)0.45243 (15)0.0214 (4)
H1120.26160.54620.44420.026*
C1130.26174 (15)0.4291 (2)0.54143 (16)0.0269 (5)
H1130.30400.46110.59400.032*
C1140.22482 (15)0.3329 (2)0.55350 (16)0.0289 (5)
H1140.24110.29950.61480.035*
C1150.16466 (15)0.2848 (2)0.47744 (17)0.0285 (5)
H1150.13960.21850.48640.034*
C1160.14071 (14)0.33311 (19)0.38783 (16)0.0240 (5)
H1160.09990.29930.33500.029*
C1210.03365 (13)0.53257 (17)0.24974 (15)0.0204 (4)
C1220.01987 (14)0.57870 (19)0.32821 (16)0.0243 (5)
H1220.06460.59030.38630.029*
C1230.05875 (15)0.6075 (2)0.32155 (19)0.0313 (5)
H1230.06780.64030.37470.038*
C1240.12427 (16)0.5887 (2)0.2378 (2)0.0359 (6)
H1240.17820.60880.23330.043*
C1250.11120 (15)0.5408 (2)0.16082 (19)0.0348 (6)
H1250.15640.52720.10360.042*
C1260.03235 (15)0.51233 (19)0.16629 (17)0.0270 (5)
H1260.02370.47910.11310.032*
C1000.40211 (16)0.1117 (2)0.40949 (18)0.0339 (6)
H1000.46110.13430.43620.041*
Cl10.39374 (5)0.02380 (6)0.44430 (6)0.04887 (18)
Cl20.34498 (6)0.19884 (7)0.45463 (7)0.0642 (3)
Cl30.36757 (5)0.12290 (10)0.28457 (5)0.0685 (3)
I10.586539 (10)0.293348 (13)0.433624 (12)0.03129 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01707 (16)0.01936 (16)0.01709 (15)0.00029 (12)0.00449 (12)0.00296 (12)
P10.0202 (3)0.0167 (3)0.0162 (2)0.0016 (2)0.0079 (2)0.0016 (2)
S10.0382 (3)0.0255 (3)0.0257 (3)0.0051 (3)0.0164 (3)0.0105 (2)
N10.0222 (10)0.0349 (11)0.0263 (10)0.0080 (9)0.0128 (8)0.0060 (9)
C10.0195 (10)0.0176 (10)0.0141 (9)0.0006 (8)0.0050 (8)0.0013 (8)
C20.0179 (10)0.0214 (11)0.0177 (10)0.0007 (9)0.0041 (8)0.0040 (8)
C30.0210 (11)0.0237 (11)0.0241 (11)0.0042 (9)0.0031 (9)0.0031 (9)
C40.0280 (12)0.0191 (11)0.0242 (11)0.0026 (9)0.0037 (10)0.0022 (9)
C50.0246 (11)0.0212 (11)0.0167 (10)0.0006 (9)0.0064 (9)0.0001 (8)
C60.0298 (14)0.0541 (18)0.0255 (13)0.0149 (13)0.0061 (11)0.0118 (12)
C70.0471 (16)0.0378 (15)0.0173 (11)0.0080 (12)0.0015 (11)0.0004 (10)
C80.0251 (12)0.0424 (15)0.0198 (11)0.0069 (11)0.0077 (10)0.0125 (10)
C90.0330 (13)0.0300 (13)0.0273 (12)0.0069 (11)0.0079 (10)0.0132 (10)
C100.0225 (13)0.0568 (18)0.0320 (13)0.0130 (12)0.0073 (11)0.0167 (12)
C210.0201 (11)0.0285 (12)0.0207 (10)0.0026 (9)0.0075 (9)0.0040 (9)
C230.0430 (16)0.0575 (19)0.0407 (15)0.0219 (14)0.0232 (13)0.0007 (14)
C240.0346 (15)0.0467 (16)0.0480 (16)0.0167 (13)0.0229 (13)0.0256 (13)
C250.0232 (13)0.0520 (17)0.0382 (14)0.0023 (12)0.0039 (11)0.0032 (13)
C1110.0208 (11)0.0183 (10)0.0200 (10)0.0021 (8)0.0113 (9)0.0017 (8)
C1120.0246 (12)0.0196 (11)0.0228 (10)0.0008 (9)0.0117 (9)0.0018 (9)
C1130.0295 (13)0.0291 (12)0.0204 (11)0.0002 (10)0.0066 (10)0.0013 (9)
C1140.0347 (14)0.0311 (13)0.0225 (11)0.0050 (11)0.0121 (10)0.0076 (10)
C1150.0314 (13)0.0252 (12)0.0326 (13)0.0023 (10)0.0158 (11)0.0065 (10)
C1160.0230 (12)0.0228 (11)0.0263 (11)0.0027 (9)0.0087 (9)0.0010 (9)
C1210.0207 (11)0.0182 (10)0.0231 (10)0.0025 (9)0.0087 (9)0.0006 (8)
C1220.0241 (12)0.0250 (12)0.0246 (11)0.0012 (9)0.0096 (9)0.0002 (9)
C1230.0314 (13)0.0277 (13)0.0399 (14)0.0026 (10)0.0189 (12)0.0000 (11)
C1240.0249 (13)0.0313 (14)0.0527 (16)0.0046 (11)0.0150 (12)0.0068 (12)
C1250.0236 (13)0.0340 (14)0.0396 (14)0.0050 (11)0.0020 (11)0.0021 (11)
C1260.0264 (12)0.0258 (12)0.0264 (12)0.0066 (10)0.0064 (10)0.0026 (9)
C1000.0264 (13)0.0414 (15)0.0296 (13)0.0052 (11)0.0044 (11)0.0017 (11)
Cl10.0362 (4)0.0370 (4)0.0614 (5)0.0056 (3)0.0022 (3)0.0025 (3)
Cl20.0818 (6)0.0558 (5)0.0758 (6)0.0302 (5)0.0536 (5)0.0199 (4)
Cl30.0528 (5)0.1143 (8)0.0300 (4)0.0006 (5)0.0042 (3)0.0028 (4)
I10.02343 (9)0.03225 (10)0.03755 (10)0.00095 (6)0.00995 (7)0.00385 (7)
Geometric parameters (Å, º) top
Fe1—C22.017 (2)C21—H21A0.9900
Fe1—C12.017 (2)C21—H21B0.9900
Fe1—C82.027 (2)C23—H23A0.9800
Fe1—C72.030 (2)C23—H23B0.9800
Fe1—C52.035 (2)C23—H23C0.9800
Fe1—C92.036 (2)C24—H24A0.9800
Fe1—C32.039 (2)C24—H24B0.9800
Fe1—C102.053 (3)C24—H24C0.9800
Fe1—C62.056 (3)C25—H25A0.9800
Fe1—C42.056 (2)C25—H25B0.9800
P1—C11.792 (2)C25—H25C0.9800
P1—C1111.814 (2)C111—C1121.385 (3)
P1—C1211.818 (2)C111—C1161.389 (3)
P1—S11.9524 (7)C112—C1131.386 (3)
N1—C241.492 (3)C112—H1120.9500
N1—C231.495 (3)C113—C1141.380 (3)
N1—C251.497 (3)C113—H1130.9500
N1—C211.527 (3)C114—C1151.375 (4)
C1—C51.435 (3)C114—H1140.9500
C1—C21.453 (3)C115—C1161.385 (3)
C2—C31.424 (3)C115—H1150.9500
C2—C211.490 (3)C116—H1160.9500
C3—C41.403 (3)C121—C1261.388 (3)
C3—H30.9500C121—C1221.395 (3)
C4—C51.414 (3)C122—C1231.382 (3)
C4—H40.9500C122—H1220.9500
C5—H50.9500C123—C1241.383 (4)
C6—C101.405 (4)C123—H1230.9500
C6—C71.417 (4)C124—C1251.377 (4)
C6—H60.9500C124—H1240.9500
C7—C81.412 (4)C125—C1261.390 (3)
C7—H70.9500C125—H1250.9500
C8—C91.406 (3)C126—H1260.9500
C8—H80.9500C100—Cl21.745 (3)
C9—C101.404 (4)C100—Cl11.752 (3)
C9—H90.9500C100—Cl31.753 (3)
C10—H100.9500C100—H1001.0000
C2—Fe1—C142.23 (8)Fe1—C6—H6126.7
C2—Fe1—C8114.24 (9)C8—C7—C6108.0 (2)
C1—Fe1—C8149.55 (9)C8—C7—Fe169.50 (14)
C2—Fe1—C7108.25 (10)C6—C7—Fe170.69 (15)
C1—Fe1—C7118.22 (10)C8—C7—H7126.0
C8—Fe1—C740.74 (11)C6—C7—H7126.0
C2—Fe1—C569.81 (9)Fe1—C7—H7125.4
C1—Fe1—C541.49 (8)C9—C8—C7107.7 (2)
C8—Fe1—C5166.33 (10)C9—C8—Fe170.09 (13)
C7—Fe1—C5152.30 (10)C7—C8—Fe169.76 (13)
C2—Fe1—C9146.24 (9)C9—C8—H8126.2
C1—Fe1—C9169.62 (9)C7—C8—H8126.2
C8—Fe1—C940.51 (10)Fe1—C8—H8125.6
C7—Fe1—C968.06 (11)C10—C9—C8108.3 (2)
C5—Fe1—C9129.32 (10)C10—C9—Fe170.58 (14)
C2—Fe1—C341.11 (9)C8—C9—Fe169.41 (13)
C1—Fe1—C369.65 (9)C10—C9—H9125.8
C8—Fe1—C3105.52 (10)C8—C9—H9125.8
C7—Fe1—C3129.23 (11)Fe1—C9—H9125.8
C5—Fe1—C368.38 (9)C9—C10—C6108.3 (2)
C9—Fe1—C3113.61 (10)C9—C10—Fe169.25 (14)
C2—Fe1—C10171.76 (11)C6—C10—Fe170.12 (15)
C1—Fe1—C10132.36 (10)C9—C10—H10125.8
C8—Fe1—C1067.91 (10)C6—C10—H10125.8
C7—Fe1—C1067.79 (11)Fe1—C10—H10126.4
C5—Fe1—C10110.07 (10)C2—C21—N1115.32 (18)
C9—Fe1—C1040.17 (10)C2—C21—H21A108.4
C3—Fe1—C10147.00 (11)N1—C21—H21A108.4
C2—Fe1—C6132.44 (11)C2—C21—H21B108.4
C1—Fe1—C6111.10 (10)N1—C21—H21B108.4
C8—Fe1—C668.21 (10)H21A—C21—H21B107.5
C7—Fe1—C640.57 (12)N1—C23—H23A109.5
C5—Fe1—C6119.62 (10)N1—C23—H23B109.5
C9—Fe1—C667.65 (11)H23A—C23—H23B109.5
C3—Fe1—C6169.41 (11)N1—C23—H23C109.5
C10—Fe1—C639.98 (12)H23A—C23—H23C109.5
C2—Fe1—C468.76 (9)H23B—C23—H23C109.5
C1—Fe1—C469.09 (9)N1—C24—H24A109.5
C8—Fe1—C4127.30 (10)N1—C24—H24B109.5
C7—Fe1—C4166.46 (11)H24A—C24—H24B109.5
C5—Fe1—C440.42 (9)N1—C24—H24C109.5
C9—Fe1—C4106.63 (10)H24A—C24—H24C109.5
C3—Fe1—C440.07 (9)H24B—C24—H24C109.5
C10—Fe1—C4116.83 (11)N1—C25—H25A109.5
C6—Fe1—C4150.50 (11)N1—C25—H25B109.5
C1—P1—C111105.46 (10)H25A—C25—H25B109.5
C1—P1—C121106.77 (10)N1—C25—H25C109.5
C111—P1—C121101.86 (9)H25A—C25—H25C109.5
C1—P1—S1115.51 (7)H25B—C25—H25C109.5
C111—P1—S1113.33 (7)C112—C111—C116120.0 (2)
C121—P1—S1112.72 (8)C112—C111—P1122.49 (16)
C24—N1—C23109.6 (2)C116—C111—P1117.47 (17)
C24—N1—C25108.6 (2)C111—C112—C113119.9 (2)
C23—N1—C25108.7 (2)C111—C112—H112120.1
C24—N1—C21110.85 (18)C113—C112—H112120.1
C23—N1—C21107.32 (19)C114—C113—C112119.9 (2)
C25—N1—C21111.69 (19)C114—C113—H113120.1
C5—C1—C2106.79 (18)C112—C113—H113120.1
C5—C1—P1123.78 (16)C115—C114—C113120.5 (2)
C2—C1—P1129.43 (16)C115—C114—H114119.7
C5—C1—Fe169.95 (12)C113—C114—H114119.7
C2—C1—Fe168.88 (11)C114—C115—C116120.0 (2)
P1—C1—Fe1125.51 (11)C114—C115—H115120.0
C3—C2—C1107.25 (19)C116—C115—H115120.0
C3—C2—C21122.72 (19)C115—C116—C111119.8 (2)
C1—C2—C21129.7 (2)C115—C116—H116120.1
C3—C2—Fe170.31 (13)C111—C116—H116120.1
C1—C2—Fe168.89 (12)C126—C121—C122119.6 (2)
C21—C2—Fe1121.12 (15)C126—C121—P1120.34 (17)
C4—C3—C2108.9 (2)C122—C121—P1120.05 (17)
C4—C3—Fe170.62 (13)C123—C122—C121120.1 (2)
C2—C3—Fe168.59 (12)C123—C122—H122120.0
C4—C3—H3125.6C121—C122—H122120.0
C2—C3—H3125.6C122—C123—C124120.2 (2)
Fe1—C3—H3126.8C122—C123—H123119.9
C3—C4—C5108.8 (2)C124—C123—H123119.9
C3—C4—Fe169.31 (13)C125—C124—C123119.9 (2)
C5—C4—Fe168.99 (12)C125—C124—H124120.0
C3—C4—H4125.6C123—C124—H124120.0
C5—C4—H4125.6C124—C125—C126120.5 (2)
Fe1—C4—H4127.7C124—C125—H125119.8
C4—C5—C1108.33 (19)C126—C125—H125119.8
C4—C5—Fe170.59 (12)C121—C126—C125119.7 (2)
C1—C5—Fe168.56 (11)C121—C126—H126120.1
C4—C5—H5125.8C125—C126—H126120.1
C1—C5—H5125.8Cl2—C100—Cl1109.90 (14)
Fe1—C5—H5126.6Cl2—C100—Cl3109.62 (14)
C10—C6—C7107.6 (2)Cl1—C100—Cl3110.86 (15)
C10—C6—Fe169.89 (15)Cl2—C100—H100108.8
C7—C6—Fe168.74 (15)Cl1—C100—H100108.8
C10—C6—H6126.2Cl3—C100—H100108.8
C7—C6—H6126.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···I10.983.054.001 (3)163
C100—H100···I11.002.933.810 (3)147

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C21H24NPS)]I·CHCl3
Mr720.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)17.4056 (6), 12.1843 (3), 14.9389 (5)
β (°) 110.632 (4)
V3)2964.97 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.49 × 0.18 × 0.10
Data collection
DiffractometerAgilent Xcalibur (Sapphire1, long nozzle)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.574, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
31103, 6065, 5385
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.08
No. of reflections6065
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.61

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···I10.983.054.001 (3)163.2
C100—H100···I11.002.933.810 (3)147.4
Comparison of the Cp—C—NMe3 framework (Å, °) in the title compound and related structures in the CSD. top
N1···Cp is the distance of the N atom from the Cp ring, C21···Cp is the distance of the C21 atom from the Cp ring and Ang1 is the dihedral angle between the Cp ring and the plane defined by C2—C21—N1.
ReferenceC2—C21C21—N1N1···CpC21···CpAng
This study1.490 (3)1.527 (3)1.182 (2)-0.128 (2)83.2 (2)
ASAZIE1.4761.5301.253-0.09687.49
BUBCOQ1.5051.5201.256-0.10690.0
BUBCUW(1)1.5181.5311.260-0.09584.38
BUBCUW(2)1.4941.5251.311-0.04887.72
DEHHUU1.4821.5241.220-0.11190.0
EDUQUP1.4931.5251.294-0.07288.68
HABDUL(1)1.4931.5201.167-0.14787.20
HABDUL(2)1.4671.4721.270-0.03385.45
HABFAT(1)1.4601.5301.233-0.12586.58
HABFAT(2)1.4781.5401.125-0.16784.17
HABFAT(3)1.4991.5261.309-0.06388.73
HIZFOM(1)1.4711.5191.327-0.02981.08
HIZFOM(2)1.4471.5251.425-0.03290.0
HIZFOM(3)1.4321.5151.393-0.04283.97
HIZFOM(4)1.3361.5291.335-0.00790.0
IBIROB(1)1.4931.5291.197-0.14288.83
IBIROB(2)1.4701.5371.324-0.06082.55
IGEPUG(1)1.5191.5201.248-0.06677.69
IGEPUG(2)1.5221.5230.999-0.27485.92
IGEPUG(3)1.5141.5331.914-0.42681.02
IGEPUG(4)1.5161.5331.152-0.16383.23
IGEQAN(1)1.4621.5331.251-0.10682.66
IGEQAN(2)1.4811.5431.216-0.12387.22
IKONOL1.4851.5221.223-0.10084.09
IKONOL011.4841.5141.223-0.09790.0
IKONUR1.4951.5261.177-0.13486.93
IKUZOD(1)1.4931.5301.272-0.07380.32
IKUZOD(2)1.4871.5281.316-0.05082.74
IKUZUJ(1)1.4841.5351.290-0.07288.63
IKUZUJ(2)1.4891.5371.256-0.09487.41
IQUCIG1.4851.5281.263-0.08379.62
JUHXEP1.4711.5161.283-0.06688.29
JUJDOH1.4821.5361.330-0.05688.54
JUJDOH011.4881.5101.327-0.03387.68
JUJFEZ1.4851.5301.225-0.11188.50
LEJHIR1.4881.5211.129-0.14176.82
LEJHOX(1)1.5021.5231.200-0.12083.12
LEJHOX(2)1.4841.5261.203-0.12786.84
LIFWUS(1)1.5091.5361.127-0.16678.64
LIFWUS(2)1.4851.5441.101-0.12769.81
LIFXAZ1.4941.5251.125-0.12970.44
NAGHOU1.5011.5271.256-0.06077.63
NAGHUA(1)1.4891.5261.235-0.09779.70
NAGHUA(2)1.4951.5281.182-0.12979.44
NATZEO1.4591.5491.295-0.07489.24
NEYSIT1.4861.5251.256-0.09086.76
SAZWIA1.4721.5301.188-0.11980.76
WASGED(1)1.4891.5331.181-0.15088.52
WASGED(2)1.4881.5231.239-0.10188.53
WASGED(3)1.4791.5181.241-0.09388.22
XAJNIF(1)1.4811.5191.318-0.05487.91
XAJNIF(2)1.4881.5321.325-0.04987.05
XEQKIN1.4971.5311.378-0.01284.17
YOVGOF1.4881.5241.265-0.05775.89
Notes: ASAZIE (Bai et al., 2011); BUBCOQ (Zhuji et al., 1982); BUBCUW (Yongmao et al., 1982); DEHHUU (Volkov et al., 2006); EDUQUP (Reynes et al., 2002); HABDUL (Xu et al., 2010); HABFAT (Xu et al., 2010) ; HIZFOM (Selvapalam et al., 2007); IBIROB (Hu et al., 2004); IGEPUG (Li et al., 2009); IGEQAN (Li et al., 2009); IKONOL (Ballester et al., 2003); IKOOL01 (Herbstein & Kapon, 2008); IKONUR (Ballester et al., 2003); IKUZOD (Volkov et al., 2003); IKUZUJ (Volkov et al., 2003); IQUCIG (Blake et al., 2004); JUHXEP (Pullen et al., 1998); JUJDOH (Pullen et al., 1998); JUJDOH01 (Pullen et al., 1998); JUJFEZ (Pullen et al., 1998); LEJHIR (Ferguson et al., 1994); LEJHOX (Ferguson et al., 1994); LIFWUS (Malezieux et al., 1994); LIFXAZ (Malezieux et al., 1994); NAGHOU (Broomsgrove et al., 2010); NAGHUA (Broomsgrove et al., 2010) ; NATZEO (Hong et al., 2005); NEYSIT (Chohan et al., 1997); SAZWIA (Sharma et al., 2006); WASGED (Volkov et al., 2005); XAJNIF (Hosmane et al., 1998); XEQKIN (Deck et al., 2000); YOVGOF (Veya & Kochi, 1995).
 

Acknowledgements

AK thanks the Ministry of Education, Science, Youth and Sports of Ukraine for funding his stay at the LCC.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAudin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2010). C. R. Chim. 13, 890–899.  CrossRef CAS Google Scholar
First citationBai, Y., Zhang, G. Q., Dang, D. B., Qi, Z. Y. & Zhang, L. (2011). Z. Naturforsch. Teil B, 66, 549–552.  CrossRef CAS Google Scholar
First citationBallester, L., Gil, A. M., Gutierrez, A., Perpinan, M. F., Sanchez, A. E., Fonari, M., Suwinska, K. & Belsky, V. (2003). Eur. J. Inorg. Chem. pp. 3034–3041.  Web of Science CSD CrossRef Google Scholar
First citationBlake, A. J., Caltagirone, C., Lippolis, V., Schröder, M. & Wilson, C. (2004). Acta Cryst. E60, m20–m21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBroomsgrove, A. E. J., Addy, D. A., Di Paolo, A., Morgan, I. R., Bresner, C., Chislett, V., Fallis, I. A., Thompson, A. L., Vidovic, D. & Aldridge, S. (2010). Inorg. Chem. 49, 157–173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChohan, Z. H., Howie, R. A., Wardell, J. L., Wilkens, R. & Doidge-Harrison, S. M. S. V. (1997). Polyhedron, 16, 2689–2696.  CSD CrossRef CAS Web of Science Google Scholar
First citationDebono, N., Labande, A., Manoury, E., Daran, J.-C. & Poli, R. (2010). Organometallics, 29, 1879–1882.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1994). Acta Cryst. B50, 146–150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerbstein, F. H. & Kapon, M. (2008). Struct. Chem. 19, 679–682.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, J., Tang, L.-F., Yang, Z., Zhai, Y.-P. & Nan, M. (2005). Transition Met. Chem. 30, 439–444.  Web of Science CSD CrossRef CAS Google Scholar
First citationHosmane, N. S., Franken, A., Zhang, G., Srivastava, R. R., Smith, R. Y. & Spielvogel, B. F. (1998). Main Group Met. Chem. 21, 319–324.  CrossRef CAS Google Scholar
First citationHu, J., Barbour, L. J. & Gokel, G. W. (2004). New J. Chem. 28, 907–911.  Web of Science CSD CrossRef CAS Google Scholar
First citationLe Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 1064–1073.  Web of Science CrossRef Google Scholar
First citationLi, Z., Liu, B., Xu, H., Xue, G., Hu, H., Fu, F. & Wang, J. (2009). J. Organomet. Chem. 694, 2210–2216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalezieux, B., Gruselle, M., Troitskaya, L. L., Sokolov, V. I. & Vaissermann, J. (1994). Organometallics, 13, 2979–2986.  CSD CrossRef CAS Web of Science Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationPullen, A. E., Faulmann, C., Pokhodnya, K. I., Cassoux, P. & Tokumoto, M. (1998). Inorg. Chem. 37, 6714–6720.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReynes, O., Moutet, J.-C., Pecaut, J., Royal, G. & Saint-Aman, E. (2002). New J. Chem. 26, 9–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.  Web of Science CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvapalam, N., Kim, H., Sobransingh, D., Kaifer, A. E., Liu, S., Isaacs, L., Chen, W., Moghaddam, S., Gilson, M. K., Kim, K. & Inoue, Y. (2007). Proc. Natl Acad. Sci. USA, 104, 20737–20742.  Web of Science PubMed Google Scholar
First citationSharma, P., Lopez, J. G., Ortega, C., Rosas, N., Cabrera, A., Alvarez, C., Toscano, A. & Reyes, E. (2006). Inorg. Chem. Commun. 9, 82–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeya, P. L. & Kochi, J. K. (1995). J. Organomet. Chem. 488, C4–C8.  CSD CrossRef CAS Web of Science Google Scholar
First citationVolkov, O., Hu, C., Kolle, V. & Paetzold, P. (2005). Z. Anorg. Allg. Chem. 631, 1909–1911.  Web of Science CSD CrossRef CAS Google Scholar
First citationVolkov, O., Paetzold, P. & Hu, C. (2006). Z. Anorg. Allg. Chem. 632, 945–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationVolkov, O., Rath, N. P. & Barton, L. (2003). J. Organomet. Chem. 680, 212–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, H., Zhang, L., Li, Z., Li, Z., Hu, H. & Xue, G. (2010). J. Cluster Sci. 21, 211–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationYongmao, Z., Zhaoping, C., Zhiwei, C., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 45–46.  Google Scholar
First citationZhuji, F., Kezhen, P., Jiaxi, L., Guomin, Z. & Hong, Z. (1982). Jiegou Huaxue, 1, 57–59.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1490-m1491
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds