organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­methyl­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 November 2012; accepted 20 November 2012; online 24 November 2012)

In the crystal structure of the title compound, C14H14N2O4S, the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and anti to the ortho- and syn to the meta-methyl groups in the aniline ring. The mol­ecule is twisted at the S—N bond with a torsion angle of 71.41 (18)°. The dihedral angle between the planes of the benzene rings is 51.07 (8)°. In the crystal, pairs of N—H⋯Osulfonamide hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o3188.]); Gowda et al. (2002[Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967-973.]) and of N-chloro­aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O4S

  • Mr = 306.33

  • Triclinic, [P \overline 1]

  • a = 8.1987 (7) Å

  • b = 9.6729 (9) Å

  • c = 9.9328 (9) Å

  • α = 84.386 (9)°

  • β = 72.096 (8)°

  • γ = 89.239 (9)°

  • V = 745.86 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.36 × 0.24 × 0.16 mm

Data collection
  • Oxford Diffraction Xcaliburdiffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.921, Tmax = 0.964

  • 4954 measured reflections

  • 3027 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.14

  • 3027 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.27 (2) 3.023 (2) 152 (2)
Symmetry code: (i) -x, -y, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of substituents on the structures and other aspects of N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2,5-dimethylphenyl)-2-nitrobenzene- sulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and anti to the ortho-methyl and syn to the meta-methyl groups in the anilino ring, compared to the anti conformation observed between the N—H bond and both the ortho- and meta-methyl groups in the anilino ring observed in N-(2,3-dimethylphenyl)-2-nitrobenzene- sulfonamide (II) (Chaithanya et al., 2012).

The molecules in (I) are twisted at the S—N bond with the torsional angle of 71.41 (18)°, compared to the values of -60.37 (30) and 58.81 (34)° in the two independent molecules of (II).

The dihedral angle between the sulfonyl and the anilino rings is 51.07 (8)°, compared to the values of 53.67 (8) and 56.99 (9)° in the two molecules of (II).

The amide H-atom showed the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating inversion dimers (Table 1, Fig. 2.)

In the crystal structure, N1—H1N···O2(S) intermolecular hydrogen bonds link the molecules into inversion dimers (Table 1, Fig. 2.)

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonyl- chloride with 2,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2,5-dimethylphenyl)-2-nitrobenzenesulfon- amide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like light brown single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq (C-methyl) of the parent atom.

The (0 1 1) reflection is probably affected by the beamstop and was omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,5-Dimethylphenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C14H14N2O4SZ = 2
Mr = 306.33F(000) = 320
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1987 (7) ÅCell parameters from 3120 reflections
b = 9.6729 (9) Åθ = 2.6–27.8°
c = 9.9328 (9) ŵ = 0.23 mm1
α = 84.386 (9)°T = 293 K
β = 72.096 (8)°Prism, light brown
γ = 89.239 (9)°0.36 × 0.24 × 0.16 mm
V = 745.86 (12) Å3
Data collection top
Oxford Diffraction Xcaliburdiffractometer with Sapphire CCD3027 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.921, Tmax = 0.964k = 1211
4954 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C14H14N2O4Sγ = 89.239 (9)°
Mr = 306.33V = 745.86 (12) Å3
Triclinic, P1Z = 2
a = 8.1987 (7) ÅMo Kα radiation
b = 9.6729 (9) ŵ = 0.23 mm1
c = 9.9328 (9) ÅT = 293 K
α = 84.386 (9)°0.36 × 0.24 × 0.16 mm
β = 72.096 (8)°
Data collection top
Oxford Diffraction Xcaliburdiffractometer with Sapphire CCD3027 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2629 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.964Rint = 0.011
4954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.28 e Å3
3027 reflectionsΔρmin = 0.29 e Å3
193 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3540 (2)0.0929 (2)0.6857 (2)0.0387 (4)
C20.4684 (2)0.0253 (2)0.7467 (2)0.0433 (4)
C30.6437 (3)0.0467 (3)0.6890 (3)0.0561 (6)
H30.71870.00160.72940.067*
C40.7051 (3)0.1400 (3)0.5713 (3)0.0657 (7)
H40.82260.15640.53260.079*
C50.5947 (3)0.2092 (3)0.5104 (3)0.0657 (7)
H50.63760.27320.43130.079*
C60.4199 (3)0.1846 (2)0.5655 (2)0.0525 (5)
H60.34620.22990.52160.063*
C70.0552 (3)0.3225 (2)0.8314 (2)0.0448 (5)
C80.1732 (3)0.4106 (2)0.8577 (2)0.0567 (6)
C90.1583 (4)0.5520 (3)0.8214 (3)0.0760 (8)
H90.23180.61470.83980.091*
C100.0386 (4)0.6010 (3)0.7595 (3)0.0772 (9)
H100.03480.69610.73520.093*
C110.0768 (4)0.5141 (3)0.7317 (3)0.0701 (7)
C120.0680 (3)0.3728 (2)0.7717 (2)0.0546 (5)
H120.14640.31140.75800.065*
C130.3075 (4)0.3582 (3)0.9231 (3)0.0808 (9)
H13A0.37940.29420.86420.121*
H13B0.25310.31181.01590.121*
H13C0.37590.43500.93100.121*
C140.2091 (5)0.5675 (4)0.6626 (4)0.1074 (12)
H14A0.15240.61510.57090.161*
H14B0.28330.63040.72130.161*
H14C0.27560.49070.65180.161*
N10.0568 (2)0.17583 (17)0.86856 (18)0.0440 (4)
H1N0.054 (3)0.147 (2)0.9500 (18)0.053*
N20.4089 (3)0.0701 (2)0.8773 (2)0.0605 (5)
O10.06849 (18)0.11008 (16)0.63232 (16)0.0524 (4)
O20.09053 (18)0.06778 (14)0.82168 (17)0.0530 (4)
O30.3174 (2)0.0226 (2)0.98338 (19)0.0766 (6)
O40.4595 (3)0.1884 (2)0.8720 (3)0.1039 (8)
S10.12780 (6)0.06923 (5)0.75061 (5)0.04028 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (9)0.0461 (10)0.0427 (10)0.0008 (7)0.0130 (8)0.0090 (8)
C20.0392 (10)0.0489 (11)0.0462 (11)0.0018 (8)0.0184 (8)0.0087 (9)
C30.0352 (10)0.0803 (16)0.0610 (14)0.0081 (10)0.0235 (10)0.0184 (12)
C40.0340 (11)0.107 (2)0.0540 (13)0.0084 (12)0.0080 (10)0.0155 (13)
C50.0470 (12)0.0948 (19)0.0483 (13)0.0161 (12)0.0074 (10)0.0054 (12)
C60.0427 (11)0.0664 (14)0.0482 (12)0.0028 (10)0.0159 (9)0.0026 (10)
C70.0419 (10)0.0408 (10)0.0425 (10)0.0039 (8)0.0003 (8)0.0034 (8)
C80.0508 (12)0.0569 (13)0.0516 (12)0.0120 (10)0.0032 (10)0.0149 (10)
C90.0778 (18)0.0586 (16)0.0737 (18)0.0236 (14)0.0073 (15)0.0178 (13)
C100.099 (2)0.0401 (13)0.0682 (17)0.0027 (14)0.0094 (16)0.0016 (12)
C110.0859 (19)0.0550 (15)0.0579 (14)0.0203 (13)0.0073 (13)0.0015 (11)
C120.0560 (13)0.0474 (12)0.0562 (13)0.0057 (10)0.0110 (10)0.0070 (10)
C130.0585 (15)0.101 (2)0.090 (2)0.0091 (14)0.0240 (14)0.0389 (17)
C140.136 (3)0.085 (2)0.100 (3)0.050 (2)0.041 (2)0.0008 (19)
N10.0415 (9)0.0426 (9)0.0433 (9)0.0010 (7)0.0078 (7)0.0007 (7)
N20.0507 (11)0.0670 (13)0.0716 (14)0.0038 (9)0.0350 (11)0.0086 (10)
O10.0400 (7)0.0664 (10)0.0586 (9)0.0051 (7)0.0254 (7)0.0112 (7)
O20.0451 (8)0.0412 (8)0.0708 (10)0.0064 (6)0.0158 (7)0.0025 (7)
O30.0671 (11)0.1086 (16)0.0516 (10)0.0154 (10)0.0196 (9)0.0114 (10)
O40.1010 (17)0.0670 (13)0.147 (2)0.0127 (12)0.0545 (16)0.0241 (13)
S10.0304 (2)0.0421 (3)0.0500 (3)0.00165 (17)0.01472 (19)0.0047 (2)
Geometric parameters (Å, º) top
C1—C61.383 (3)C9—H90.9300
C1—C21.389 (3)C10—C111.380 (4)
C1—S11.7764 (18)C10—H100.9300
C2—C31.384 (3)C11—C121.392 (3)
C2—N21.470 (3)C11—C141.512 (4)
C3—C41.371 (4)C12—H120.9300
C3—H30.9300C13—H13A0.9600
C4—C51.369 (4)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.383 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C121.382 (3)N1—S11.6049 (18)
C7—C81.397 (3)N1—H1N0.823 (16)
C7—N11.431 (3)N2—O41.213 (3)
C8—C91.393 (4)N2—O31.218 (3)
C8—C131.500 (4)O1—S11.4242 (15)
C9—C101.367 (5)O2—S11.4295 (15)
C6—C1—C2118.12 (18)C10—C11—C12116.9 (3)
C6—C1—S1117.31 (15)C10—C11—C14122.5 (3)
C2—C1—S1124.57 (15)C12—C11—C14120.6 (3)
C3—C2—C1121.6 (2)C7—C12—C11121.1 (2)
C3—C2—N2116.78 (18)C7—C12—H12119.4
C1—C2—N2121.63 (18)C11—C12—H12119.4
C4—C3—C2119.0 (2)C8—C13—H13A109.5
C4—C3—H3120.5C8—C13—H13B109.5
C2—C3—H3120.5H13A—C13—H13B109.5
C5—C4—C3120.4 (2)C8—C13—H13C109.5
C5—C4—H4119.8H13A—C13—H13C109.5
C3—C4—H4119.8H13B—C13—H13C109.5
C4—C5—C6120.5 (2)C11—C14—H14A109.5
C4—C5—H5119.7C11—C14—H14B109.5
C6—C5—H5119.7H14A—C14—H14B109.5
C5—C6—C1120.3 (2)C11—C14—H14C109.5
C5—C6—H6119.9H14A—C14—H14C109.5
C1—C6—H6119.9H14B—C14—H14C109.5
C12—C7—C8121.8 (2)C7—N1—S1121.88 (14)
C12—C7—N1117.78 (19)C7—N1—H1N119.0 (17)
C8—C7—N1120.4 (2)S1—N1—H1N115.8 (17)
C9—C8—C7116.1 (2)O4—N2—O3125.3 (2)
C9—C8—C13121.2 (2)O4—N2—C2117.4 (2)
C7—C8—C13122.6 (2)O3—N2—C2117.3 (2)
C10—C9—C8121.9 (3)O1—S1—O2119.85 (9)
C10—C9—H9119.1O1—S1—N1108.74 (9)
C8—C9—H9119.1O2—S1—N1107.05 (9)
C9—C10—C11122.1 (2)O1—S1—C1105.37 (9)
C9—C10—H10118.9O2—S1—C1108.28 (9)
C11—C10—H10118.9N1—S1—C1106.93 (9)
C6—C1—C2—C30.9 (3)C8—C7—C12—C111.7 (3)
S1—C1—C2—C3178.74 (16)N1—C7—C12—C11179.5 (2)
C6—C1—C2—N2177.9 (2)C10—C11—C12—C72.4 (4)
S1—C1—C2—N22.5 (3)C14—C11—C12—C7178.3 (2)
C1—C2—C3—C42.1 (3)C12—C7—N1—S175.0 (2)
N2—C2—C3—C4176.8 (2)C8—C7—N1—S1106.1 (2)
C2—C3—C4—C51.2 (4)C3—C2—N2—O459.0 (3)
C3—C4—C5—C60.8 (4)C1—C2—N2—O4122.2 (2)
C4—C5—C6—C12.0 (4)C3—C2—N2—O3118.6 (2)
C2—C1—C6—C51.2 (3)C1—C2—N2—O360.2 (3)
S1—C1—C6—C5179.19 (19)C7—N1—S1—O141.91 (18)
C12—C7—C8—C90.5 (3)C7—N1—S1—O2172.73 (15)
N1—C7—C8—C9178.28 (19)C7—N1—S1—C171.41 (18)
C12—C7—C8—C13179.7 (2)C6—C1—S1—O122.19 (19)
N1—C7—C8—C130.9 (3)C2—C1—S1—O1157.44 (17)
C7—C8—C9—C102.0 (4)C6—C1—S1—O2151.56 (17)
C13—C8—C9—C10178.8 (2)C2—C1—S1—O228.1 (2)
C8—C9—C10—C111.3 (4)C6—C1—S1—N193.39 (18)
C9—C10—C11—C120.9 (4)C2—C1—S1—N186.97 (18)
C9—C10—C11—C14179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (2)2.27 (2)3.023 (2)152 (2)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1987 (7), 9.6729 (9), 9.9328 (9)
α, β, γ (°)84.386 (9), 72.096 (8), 89.239 (9)
V3)745.86 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.36 × 0.24 × 0.16
Data collection
DiffractometerOxford Diffraction Xcaliburdiffractometer with Sapphire CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.921, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
4954, 3027, 2629
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.14
No. of reflections3027
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.823 (16)2.273 (18)3.023 (2)152 (2)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o3188.  CSD CrossRef IUCr Journals
First citationGowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.  CAS
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds