organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Chloro-2,2-di­methyl­propanamido)­benzene­sulfonamide

aDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, bCentral Research Lab, Harran University, Osmanbey Campus, 63300 Şanlıurfa, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 8 November 2012; accepted 14 November 2012; online 24 November 2012)

In the title compound, C11H15ClN2O3S, the 3-chloro-2,2-dimethyl­propanamide and sulfonamide substituents are arranged on opposite sides of the benzene ring plane. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the anti­bacterial, anti­microbial and anti­glaucoma activity of sulfonamides and their derivatives and for their physical properties and pharmacological applications, see: Poulsen et al. (2005[Poulsen, S., Bornaghi, L. F. & Healy, P. C. (2005). Bioorg. Med. Chem. Lett. 15, 5429-5433.]); Supuran & Scozzafava (2000[Supuran, C. T. & Scozzafava, A. (2000). Exp. Opin. Ther. Pat. 10, 575-600.]). For related structures, see: Akkurt et al. (2010[Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1559-o1560.]); Idemudia et al. (2012[Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1599.]); Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Alamry, K. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2258-o2259.]). For the synthesis, see: Türkmen et al. (2011[Türkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39 114-119.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClN2O3S

  • Mr = 290.77

  • Monoclinic, P 21 /c

  • a = 20.4359 (11) Å

  • b = 7.2437 (4) Å

  • c = 9.4693 (5) Å

  • β = 98.222 (3)°

  • V = 1387.35 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 294 K

  • 0.31 × 0.14 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.931, Tmax = 0.946

  • 4240 measured reflections

  • 4240 independent reflections

  • 2054 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.231

  • S = 1.02

  • 4240 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (3) 2.57 (5) 3.035 (4) 114 (4)
N1—H1N⋯O1ii 0.88 (3) 2.21 (4) 3.043 (5) 160 (5)
N1—H2N⋯O1iii 0.88 (2) 2.10 (4) 2.921 (4) 155 (5)
N2—H3N⋯O3iv 0.91 (6) 2.16 (6) 3.063 (5) 173 (5)
C11—H11B⋯O3iv 0.97 2.44 3.391 (5) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are of interest because of their unique biological properties. They are known inhibitors of the carbonic anhydrase enzyme, currently used for the treatment of glaucoma in clinical medicine (Poulsen et al., 2005; Supuran & Scozzafava, 2000). The design and development of new sulfanilamide derivatives can help determine any structural requirements for improved biological activity. In this study, we have prepared and determined the crystal structure of 4-(3-Chloro-2,2-dimethylpropanoylamino)-benzenesulfonamide (I).

In Fig. 1, the molecular structure of the title compound is not planar. In the 3-chloro-2,2-dimethylpropanamide moiety of (I), the N2—C7—C8—C9, N2—C7—C8—C10 and N2—C7—C8—C11 torsion angles are 178.6 (4), 57.2 (5) and -59.4 (5) °, respectively. The values of the bond lengths and bond angles in (I) are within the normal range and are comparable to those previously reported for the related structures (Akkurt et al., 2010; Idemudia et al., 2012; Asiri et al., 2012). The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the antibacterial, antimicrobial and antiglaucoma activity of sulfonamides and their derivatives and for their physical properties and pharmacological applications, see: Poulsen et al. (2005); Supuran & Scozzafava (2000). For related structures, see: Akkurt et al. (2010); Idemudia et al. (2012); Asiri et al. (2012). For the synthesis, see: Türkmen et al. (2011).

Experimental top

Nucleophilic acyl substitution of 3-chloro-2,2-dimethyl-propanoylchloride with sulfanilamide gave the title compound as described previously (Türkmen et al., 2011). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an ethanol, chloroform, dichloromethane (4/3/3 v/v) solution of the product.

Refinement top

The H atoms on the NH and NH2 groups were located from a difference Fourier map and refined with distance restraints of N—H = 0.88 (1) Å for the NH2, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C). The high R factor, low ratio of observed to unique reflections and relatively high su values indicate that the crystals were of rather poor quality and did not diffract strongly.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of the title compound viewed along the b axis with N—H···O and C—H···O hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.
4-(3-Chloro-2,2-dimethylpropanamido)benzenesulfonamide top
Crystal data top
C11H15ClN2O3SF(000) = 608
Mr = 290.77Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5710 reflections
a = 20.4359 (11) Åθ = 2.5–30.5°
b = 7.2437 (4) ŵ = 0.43 mm1
c = 9.4693 (5) ÅT = 294 K
β = 98.222 (3)°Needle, white
V = 1387.35 (13) Å30.31 × 0.14 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4240 independent reflections
Radiation source: Sealed Tube2054 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.000
Detector resolution: 10.0000 pixels mm-1θmax = 30.6°, θmin = 3.0°
ω scansh = 2928
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
k = 010
Tmin = 0.931, Tmax = 0.946l = 013
4240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0751P)2 + 1.0033P]
where P = (Fo2 + 2Fc2)/3
4240 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C11H15ClN2O3SV = 1387.35 (13) Å3
Mr = 290.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.4359 (11) ŵ = 0.43 mm1
b = 7.2437 (4) ÅT = 294 K
c = 9.4693 (5) Å0.31 × 0.14 × 0.13 mm
β = 98.222 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4240 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
2054 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.946Rint = 0.000
4240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0842 restraints
wR(F2) = 0.231H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.36 e Å3
4240 reflectionsΔρmin = 0.33 e Å3
175 parameters
Special details top

Experimental. Absorption correction: (XABS2; Parkin et al., 1995) Cubic fit to sin(theta)/lambda - 24 parameters

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05415 (8)0.1450 (2)0.13028 (15)0.1040 (6)
S10.43958 (5)0.22940 (14)0.07872 (10)0.0540 (3)
O10.45415 (14)0.1736 (4)0.0593 (3)0.0634 (10)
O20.42131 (15)0.4163 (4)0.1004 (3)0.0684 (11)
O30.19397 (15)0.3907 (4)0.0227 (3)0.0689 (10)
N10.50493 (18)0.1856 (5)0.1885 (3)0.0592 (11)
N20.22555 (18)0.2516 (5)0.2354 (4)0.0640 (13)
C10.37522 (19)0.0863 (6)0.1199 (4)0.0550 (14)
C20.3682 (2)0.0917 (6)0.0669 (4)0.0603 (14)
C30.3193 (2)0.2057 (6)0.1041 (4)0.0628 (17)
C40.2770 (2)0.1406 (6)0.1935 (4)0.0579 (14)
C50.2852 (2)0.0344 (7)0.2500 (4)0.0691 (17)
C60.3339 (2)0.1493 (7)0.2132 (4)0.0675 (16)
C70.1859 (2)0.3629 (6)0.1465 (4)0.0563 (14)
C80.1294 (2)0.4544 (6)0.2119 (4)0.0643 (16)
C90.0901 (3)0.5785 (8)0.1019 (6)0.102 (3)
C100.1581 (3)0.5664 (8)0.3447 (6)0.102 (3)
C110.0849 (2)0.3082 (7)0.2637 (5)0.0727 (18)
H1N0.519 (3)0.074 (3)0.174 (6)0.1230*
H20.396600.134800.005800.0720*
H2N0.500 (3)0.209 (8)0.277 (2)0.1230*
H30.315000.325700.069000.0750*
H3N0.213 (3)0.216 (8)0.320 (6)0.1230*
H50.257700.075500.313500.0830*
H60.338900.267900.250800.0810*
H9A0.117700.677400.077800.1520*
H9B0.052900.628600.140500.1520*
H9C0.074700.508100.017800.1520*
H10A0.188100.657800.318300.1530*
H10B0.181200.485000.414800.1530*
H10C0.122700.626200.383700.1530*
H11A0.047800.368900.297600.0870*
H11B0.109500.243100.343800.0870*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1001 (11)0.1304 (13)0.0862 (9)0.0399 (9)0.0299 (8)0.0167 (8)
S10.0632 (6)0.0599 (6)0.0404 (5)0.0007 (5)0.0126 (4)0.0005 (4)
O10.079 (2)0.0732 (19)0.0411 (14)0.0032 (15)0.0195 (13)0.0002 (12)
O20.083 (2)0.0627 (18)0.0608 (17)0.0105 (15)0.0144 (15)0.0004 (14)
O30.0708 (19)0.090 (2)0.0481 (15)0.0074 (16)0.0166 (13)0.0051 (14)
N10.063 (2)0.068 (2)0.0475 (18)0.0015 (17)0.0115 (16)0.0033 (16)
N20.063 (2)0.084 (3)0.0473 (18)0.0104 (19)0.0163 (16)0.0035 (18)
C10.058 (2)0.066 (3)0.0420 (19)0.0019 (19)0.0104 (16)0.0019 (17)
C20.061 (2)0.070 (3)0.053 (2)0.001 (2)0.0190 (19)0.008 (2)
C30.063 (3)0.065 (3)0.064 (3)0.003 (2)0.021 (2)0.008 (2)
C40.056 (2)0.075 (3)0.044 (2)0.001 (2)0.0119 (17)0.0023 (19)
C50.067 (3)0.086 (3)0.059 (3)0.003 (2)0.025 (2)0.015 (2)
C60.067 (3)0.079 (3)0.059 (2)0.008 (2)0.018 (2)0.017 (2)
C70.058 (2)0.069 (3)0.044 (2)0.003 (2)0.0143 (17)0.0006 (18)
C80.074 (3)0.070 (3)0.053 (2)0.008 (2)0.023 (2)0.002 (2)
C90.113 (5)0.104 (4)0.098 (4)0.042 (4)0.048 (3)0.032 (3)
C100.125 (5)0.090 (4)0.097 (4)0.007 (3)0.035 (4)0.030 (3)
C110.073 (3)0.095 (4)0.054 (2)0.008 (3)0.023 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl1—C111.778 (5)C7—C81.536 (6)
S1—O11.439 (3)C8—C91.516 (7)
S1—O21.427 (3)C8—C101.540 (7)
S1—N11.602 (4)C8—C111.522 (6)
S1—C11.762 (4)C2—H20.9300
O3—C71.224 (5)C3—H30.9300
N2—C41.424 (6)C5—H50.9300
N2—C71.349 (5)C6—H60.9300
N1—H1N0.88 (3)C9—H9A0.9600
N1—H2N0.88 (2)C9—H9B0.9600
N2—H3N0.91 (6)C9—H9C0.9600
C1—C21.384 (6)C10—H10A0.9600
C1—C61.384 (6)C10—H10B0.9600
C2—C31.380 (6)C10—H10C0.9600
C3—C41.377 (6)C11—H11A0.9700
C4—C51.377 (6)C11—H11B0.9700
C5—C61.380 (6)
O1—S1—O2119.30 (17)C9—C8—C10110.6 (4)
O1—S1—N1105.79 (17)C9—C8—C11110.6 (4)
O1—S1—C1107.08 (18)Cl1—C11—C8113.6 (3)
O2—S1—N1107.79 (18)C1—C2—H2120.00
O2—S1—C1107.90 (19)C3—C2—H2120.00
N1—S1—C1108.62 (19)C2—C3—H3120.00
C4—N2—C7124.4 (4)C4—C3—H3120.00
H1N—N1—H2N115 (5)C4—C5—H5120.00
S1—N1—H1N110 (4)C6—C5—H5120.00
S1—N1—H2N113 (4)C1—C6—H6120.00
C4—N2—H3N113 (4)C5—C6—H6120.00
C7—N2—H3N120 (4)C8—C9—H9A110.00
S1—C1—C2120.7 (3)C8—C9—H9B109.00
C2—C1—C6119.9 (4)C8—C9—H9C109.00
S1—C1—C6119.4 (3)H9A—C9—H9B109.00
C1—C2—C3120.4 (4)H9A—C9—H9C109.00
C2—C3—C4119.6 (4)H9B—C9—H9C109.00
N2—C4—C3122.1 (4)C8—C10—H10A109.00
N2—C4—C5117.7 (4)C8—C10—H10B109.00
C3—C4—C5120.1 (4)C8—C10—H10C109.00
C4—C5—C6120.6 (4)H10A—C10—H10B110.00
C1—C6—C5119.4 (4)H10A—C10—H10C109.00
O3—C7—C8121.8 (4)H10B—C10—H10C110.00
N2—C7—C8115.2 (3)Cl1—C11—H11A109.00
O3—C7—N2123.0 (4)Cl1—C11—H11B109.00
C10—C8—C11106.2 (4)C8—C11—H11A109.00
C7—C8—C11110.4 (4)C8—C11—H11B109.00
C7—C8—C9109.5 (4)H11A—C11—H11B108.00
C7—C8—C10109.6 (4)
O1—S1—C1—C229.3 (4)C2—C3—C4—N2179.9 (4)
O1—S1—C1—C6154.6 (3)C2—C3—C4—C52.7 (6)
O2—S1—C1—C2158.9 (3)N2—C4—C5—C6179.7 (4)
O2—S1—C1—C625.0 (4)C3—C4—C5—C62.8 (6)
N1—S1—C1—C284.5 (4)C4—C5—C6—C10.8 (6)
N1—S1—C1—C691.6 (4)O3—C7—C8—C91.1 (6)
C7—N2—C4—C342.6 (6)O3—C7—C8—C10122.6 (4)
C7—N2—C4—C5139.9 (4)O3—C7—C8—C11120.8 (4)
C4—N2—C7—O36.2 (7)N2—C7—C8—C9178.6 (4)
C4—N2—C7—C8174.1 (4)N2—C7—C8—C1057.2 (5)
S1—C1—C2—C3177.4 (3)N2—C7—C8—C1159.4 (5)
C6—C1—C2—C31.4 (6)C7—C8—C11—Cl154.2 (4)
S1—C1—C6—C5177.4 (3)C9—C8—C11—Cl167.1 (4)
C2—C1—C6—C51.3 (6)C10—C8—C11—Cl1172.9 (3)
C1—C2—C3—C40.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (3)2.57 (5)3.035 (4)114 (4)
N1—H1N···O1ii0.88 (3)2.21 (4)3.043 (5)160 (5)
N1—H2N···O1iii0.88 (2)2.10 (4)2.921 (4)155 (5)
N2—H3N···O3iv0.91 (6)2.16 (6)3.063 (5)173 (5)
C3—H3···O30.932.492.896 (5)106
C6—H6···O20.932.592.936 (5)103
C11—H11B···O3iv0.972.443.391 (5)166
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15ClN2O3S
Mr290.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)20.4359 (11), 7.2437 (4), 9.4693 (5)
β (°) 98.222 (3)
V3)1387.35 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.31 × 0.14 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.931, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
4240, 4240, 2054
Rint0.000
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.231, 1.02
No. of reflections4240
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (3)2.57 (5)3.035 (4)114 (4)
N1—H1N···O1ii0.88 (3)2.21 (4)3.043 (5)160 (5)
N1—H2N···O1iii0.88 (2)2.10 (4)2.921 (4)155 (5)
N2—H3N···O3iv0.91 (6)2.16 (6)3.063 (5)173 (5)
C11—H11B···O3iv0.972.443.391 (5)166
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Scientific Research Projects of Harran University, Turkey for a research grant (HUBAK project Nos. 874 and 1136).

References

First citationAkkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1559–o1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Alamry, K. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2258–o2259.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIdemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1599.  CSD CrossRef IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPoulsen, S., Bornaghi, L. F. & Healy, P. C. (2005). Bioorg. Med. Chem. Lett. 15, 5429–5433.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2000). Exp. Opin. Ther. Pat. 10, 575–600.  CrossRef CAS Google Scholar
First citationTürkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39 114–119.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds