organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3460-o3461

1,4-Di­hydro­benzo[g]quinoxaline-2,3-dione

aDepartment of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701, Cameroon, and bTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl für Anorganische Chemie, Strasse der Nationen 62, 09111 Chemnitz, Germany
*Correspondence e-mail: francois.eya@chemie.tu-chemnitz.de

(Received 15 November 2012; accepted 19 November 2012; online 28 November 2012)

The title compound, C12H8N2O2, was prepared by the reaction of the diethyl ester of naphthalene­bis­(oxamate) with tert-BuNH2. The mol­ecule is nearly planar, with an r.m.s. deviation of 0.017 Å from the plane through all 16 non-H atoms. In the crystal, a three-dimensional network is formed, composed of layers of mol­ecules along the b- and c-axis directions, due to the formation of inter­molecular N—H⋯O hydrogen bonds, as well as of chains along the a-axis direction due to parallel displaced sandwich-type ππ inter­actions with average distances between the inter­acting mol­ecules in the range 3.35–3.40 Å.

Related literature

For the synthesis and structure of 1,4-dihydro­benzo[g]quin­oxaline-2,3-dione·3H2O, see: Oxtoby et al. (2005[Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643-4654.]). For the use of bis­(oxamates) and bis­(oxamidates) for complex formation, see: Pardo et al. (2008[Pardo, E., Ruiz-García, R., Lloret, F., Julve, M., Cano, J., Pasán, J., Ruiz-Pérez, J., Filali, Y., Chamoreau, L.-M. & Journaux, Y. (2008). Dalton Trans. pp. 2780-2805.]) and Abdulmalic et al. (2012[Abdulmalic, M. A., Aliabadi, A., Petr, A., Krupskaya, Y., Kataev, V., Büchner, B., Hahn, T., Kortus, J. & Rüffer, T. (2012). Dalton Trans. In the press. doi:10.1039/C2DT31802D.]); Rüffer et al. (2012[Rüffer, T., Abdulmalic, M. A., Aliabadi, A., Petr, A. & Kataev, V. (2012). Dalton Trans. Accepted. doi: 10.1039/C2DT32259E.]), respectively. For the general synthesis of bis­(oxamidates), see: Ruiz et al. (1997[Ruiz, R., Surville-Barland, C., Aukauloo, A., Anxolabehere-Mallart, E., Journaux, Y., Cano, J. & Muñoz, M. C. (1997). J. Chem. Soc. Dalton Trans. pp. 745-752.]) and for the synthesis of diethyl N,N'-naphtalene-bis­(oxamate), see: Rüffer et al. (2007[Rüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007). Inorg. Chim. Acta, 360, 3475-3483.]). For thin film formation by bis­(oxamato) complexes, see: Eya'ane Meva (2009[Eya'ane Meva, F. (2009). PhD thesis, Chemnitz University of Technology, Chemnitz, Germany.]); Bräuer et al. (2006[Bräuer, B., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2006). Chem. Phys. Lett. 432, 226-229.]). For self-organization in supra­molecular chemistry due to inter­molecular π inter­actions and/or hydrogen bonds, see: Burrow et al. (1996[Burrow, A. D., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Chem. Commun. pp. 97-99.]); Chowdhry et al. (1996[Chowdhry, M. M., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Chem. Commun. pp. 899-900.]); Dai et al. (1997[Dai, J., Yamamoto, M., Kudora-Sowa, T., Meakawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chem. 36, 2688-2690.]); Munoz et al. (1998[Munoz, M. C., Ruiz, R., Traianidis, M., Aukauloo, A., Cano, J., Journaux, Y., Fernandez, I. & Pedro, J. R. (1998). Angew. Chem. 110, 1933-1936.]). For dione tautomerism in the solid state, see: Svenson (1976[Svenson, C. (1976). Acta Chem. Scand. Ser. B, 30, 581-584.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2O2

  • Mr = 212.20

  • Monoclinic, P 21 /n

  • a = 7.1334 (15) Å

  • b = 8.4229 (18) Å

  • c = 15.292 (2) Å

  • β = 99.792 (14)°

  • V = 905.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.649, Tmax = 1.000

  • 5294 measured reflections

  • 1773 independent reflections

  • 875 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.271

  • S = 0.92

  • 1773 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.91 (4) 2.27 (4) 2.866 (3) 122 (3)
N2—H2N⋯O2ii 0.94 (4) 1.90 (4) 2.843 (4) 176 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x, -y-1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Weak interactions such as intermolecular π interactions or the formation of hydrogen bonds are essential for molecular recognition and self organization in biological systems and supramolecular chemistry (Burrow et al., 1996; Chowdhry et al., 1996; Dai et al., 1997). Oxtoby et al. (2005) synthesized derivatives of dihydroquinoxalinedione containing a hydrophilic oxalamide-based "terminus". This oxalamide serves to increase the water solubility of the organic molecules and allows H2O molecules to be hydrogen bonded to the organic molecules as well as to each other. In this perspective, 1,4 dihydrobenzo[g]quinoxaline-2,3-dione hydrate (1×3H2O) has been crystallized by slowly cooling a boiling solution of the powder in DMF/water to room temperature (Oxtoby et al., 2005). Infinite arrays containing two different alternating head-to-tail π interactions parallel to the crystallographic a axis were observed in the solid state of 1×3H2O, with the π stacks being orthogonal to chains of H2O molecules and held together by R22(8) hydrogen-bonding interactions.

Bis(oxamate) molecules (type I molecules, cf. Figure 4) have been widely used in order to produce a series of complexes with various magnetic interactions (Pardo et al., 2008). In previous work, our interest was devoted to a study of the impact of π interactions in the formation of thin films using trimetallic bis(oxamato) type complexes (Eya'ane Meva, 2009; Bräuer et al., 2006) as well as the investigation of electronic effects on magnetic J couplings (Rüffer et al., 2007). With the aim of using type I—NR2 molecules as ligands for the formation of transition metal complexes (Abdulmalic et al., 2012; Rüffer et al., 2012), we became interested in their synthesis. Generally, type I molecules are reacted with an excess of a primary amine (Ruiz et al., 1997) resulting in the formation of type I—NR2 molecules. On the other hand, quinoxaline derivatives are generally synthesized by refluxing diamines and oxalic acid in HCl (Oxtoby et al., 2005). We report here, that the reaction of the diethyl ester of naphtalene-bis(oxamate) (Rüffer et al., 2007), Fig. 4, with an excess of tert-BuNH2 in MeOH does not give the corresponding type I—NR2 molecule, but instead forms 1,4-dihydrobenzo[g]quinoxaline-2,3-dione (1). A similar reaction has been already described by Munoz et al. (1998), who treated o-phenylenebis(oxamate) with [Me4N]OH and Fe(ClO4)3 to obtain an analogous derivatized product in the form of its Fe(III) complex.

In the solid state 1 is nearly planar (r. m. s. d. of a calculated mean plane of C1–C12, O1, O2, N1, N2 = 0.017 Å). The bond lengths of the CO functions of 1 (1.230 (4) and 1.240 (4) Å) reveal the molecule to be the dione tautomer in the solid state (Svenson, 1976). All other bond distances and angles are comparable those described for 1×3H2O (Oxtoby et al., 2005).

In the crystal structure of 1 the formation of a three-dimensional network is observed. Intermolecular hydrogen bonds between individual molecules of 1, cf. Table 1, form two-dimensional layers. A representative view of one selected two-dimensional layer is illustrated in Figure 2, showing the two-dimensional layers extending along the crystallographic b- and c-axes. Within the two-dimensional layers the formation of dimers of 1 with R22(8) type hydrogen bond interactions is also observed, as reported for 1×3H2O (Oxtoby et al., 2005), cf. N2—H2N···O2ii in Table 1 and Figure 2. However, due to the N1—H1N···O1i, hydrogen bond cf. Table 1, the dimers are connected further to form the two-dimensional layers.

Additionally, individual molecules of 1 interact with each other by means of π interactions. They are approximately arranged in a parallel-displaced sandwich type configuration and thus form one-dimensional layers along the crystallographic a-axis, cf. Figure 3. Within such a one-dimensional chain, a head-to-tail arrangement is observed, as reported previously for 1×3H2O (Oxtoby et al., 2005). Moreover, by analogy with 1×3H2O, the π stacks of 1 are arranged orthogonal to the two-dimensional layers formed by intermolecular hydrogen bonds. The combinations of both supramolecular arrangements finally give rise to a three-dimensional network structure.

Related literature top

For the synthesis and solid state structure of 1,4-dihydrobenzo[g]quinoxaline-2,3-dione.3H2O, see: Oxtoby et al. (2005). For the use of bis(oxamates) and bis(oxamidates) for complex formation, see: Pardo et al. (2008) and Abdulmalic et al. (2012); Rüffer et al. (2012), respectively. For the general synthesis of bis(oxamidates), see: Ruiz et al. (1997) and for the synthesis of diethyl N,N'-naphtalene-bis(oxamate), see: Rüffer et al. (2007). For thin film formation by bis(oxamato) complexes, see: Eya'ane Meva (2009); Bräuer et al. (2006). For self-organization in supramolecular chemistry due to intermolecular π interactions and/or hydrogen bonds, see: Burrow et al. (1996); Chowdhry et al. (1996); Dai et al. (1997); Munoz et al. (1998). For dione tautomerism in the solid state, see: Svenson (1976).

Experimental top

Diethyl N,N'-naphthalene-bis(oxamate) was synthesized according to the literature (Rüffer et al., 2007). To a solution of diethyl naphthalene-bis(oxamate) (1.5 g, 9.49 mmol) in MeOH (50 ml) three equivalents of a solution of tert-BuNH2 (2.05 g, 28.47 mmol) in MeOH (25 ml) were added. The solution was refluxed for 30 minutes, cooled to room temperature and concentrated to 30 ml. Diethyl ether (100 ml) was added and the resulting brown precipitate was filtered and dried on air. Yellow crystals of 1 were obtained by solvent diffusion of a dilute MeOH solution of 1 against Et2O at room temperature. Yield: 0.7 g, 80%.

Refinement top

C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms, with a C—H distance of 0.93 Å and Uiso(H) = 1.2Ueq(C). The N-bonded H atoms were located on a difference Fourier map and refined freely. The high R factor, low ratio of observed to unique reflections and relatively high su values indicate that the crystals were not of good quality and were very weakly diffracting.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram (50% ellipsoid probability) of the molecular structure of 1.
[Figure 2] Fig. 2. Graphical representation of a part of one two-dimensional layer formed by 1 in the solid state due to formation of intermolecular hydrogen bonds along the crystallographic b- and c-axes. All C-bonded hydrogen atoms are omitted for clarity. Symmetry codes: (A) -3/2 – x, 1/2 + y, 1/2 – z. (B) -1/2 + x, 1/2 – y, -1/2 + z. (C) -1 – x, – y, 1 – z. (D) -1/2 + x, 1/2 – y, 1/2 + z. (E) -1/2 – x, 1/2 + y, 3/2 – z.
[Figure 3] Fig. 3. Graphical representation of the parallel-displaced sandwich type π interactions of 1 in the solid state, giving rise to the formation of one-dimensional chains along the crystallographic a-axes. All C-bonded hydrogen atoms are omitted for clarity. The sign ∢ refers to the interplanar angle and d gives the averaged distances between interacting molecules. Dotted lines indicate interacting C···C atoms as well as interactions between carbon and nitrogen atoms, respectively, with the centroids of the respective adjacent aromatic rings. Symmetry codes: (A) 1 – x, 1 – y, 1 – z. (B) -1 + x, y, z.
[Figure 4] Fig. 4. Synthesis of 1.
1,4-Dihydrobenzo[g]quinoxaline-2,3-dione top
Crystal data top
C12H8N2O2F(000) = 440
Mr = 212.20Dx = 1.557 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5135 reflections
a = 7.1334 (15) Åθ = 2.9–25.9°
b = 8.4229 (18) ŵ = 0.11 mm1
c = 15.292 (2) ÅT = 293 K
β = 99.792 (14)°Block, yellow
V = 905.4 (3) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Gemini S
diffractometer
875 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 108
Tmin = 0.649, Tmax = 1.000l = 1818
5294 measured reflections2 standard reflections every 50 reflections
1773 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.271H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1773 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C12H8N2O2V = 905.4 (3) Å3
Mr = 212.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1334 (15) ŵ = 0.11 mm1
b = 8.4229 (18) ÅT = 293 K
c = 15.292 (2) Å0.3 × 0.2 × 0.1 mm
β = 99.792 (14)°
Data collection top
Oxford Gemini S
diffractometer
875 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.039
Tmin = 0.649, Tmax = 1.0002 standard reflections every 50 reflections
5294 measured reflections intensity decay: none
1773 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0940 restraints
wR(F2) = 0.271H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.77 e Å3
1773 reflectionsΔρmin = 0.57 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2609 (4)0.2869 (4)1.1809 (2)0.0276 (8)
C20.1631 (4)0.3842 (4)1.1026 (2)0.0276 (8)
C30.2764 (4)0.0662 (4)1.07897 (19)0.0257 (8)
C40.1859 (4)0.1580 (3)1.0060 (2)0.0247 (8)
C50.3312 (4)0.0874 (4)1.06546 (19)0.0246 (8)
H50.39080.14721.11340.030*
C60.1489 (4)0.0948 (4)0.92275 (19)0.0245 (8)
H60.08760.15570.87570.029*
C70.2984 (4)0.1545 (4)0.9806 (2)0.0253 (8)
C80.2032 (4)0.0626 (4)0.9075 (2)0.0262 (8)
C90.3508 (4)0.3129 (4)0.9647 (2)0.0272 (8)
H90.41240.37381.01160.033*
C100.1628 (4)0.1342 (4)0.8220 (2)0.0284 (8)
H100.09840.07630.77430.034*
C110.3125 (5)0.3775 (4)0.8816 (2)0.0327 (8)
H110.34880.48150.87260.039*
C120.2174 (5)0.2868 (4)0.8089 (2)0.0327 (9)
H120.19240.33130.75250.039*
N10.3053 (4)0.1348 (3)1.16349 (17)0.0273 (7)
N20.1300 (4)0.3136 (3)1.02231 (17)0.0260 (7)
O10.2918 (3)0.3464 (3)1.25533 (14)0.0361 (7)
O20.1113 (3)0.5216 (3)1.11523 (14)0.0344 (7)
H1N0.354 (5)0.073 (5)1.211 (2)0.043 (10)*
H2N0.053 (6)0.366 (5)0.975 (3)0.059 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (19)0.0156 (17)0.0319 (17)0.0018 (13)0.0036 (13)0.0041 (13)
C20.0318 (18)0.0181 (17)0.0319 (16)0.0028 (13)0.0028 (13)0.0005 (13)
C30.0279 (18)0.0199 (18)0.0290 (16)0.0010 (12)0.0041 (12)0.0026 (13)
C40.0258 (18)0.0128 (16)0.0358 (17)0.0013 (12)0.0055 (13)0.0030 (12)
C50.0273 (17)0.0139 (16)0.0316 (16)0.0028 (12)0.0023 (12)0.0012 (12)
C60.0265 (17)0.0172 (17)0.0289 (15)0.0001 (12)0.0019 (12)0.0036 (12)
C70.0279 (18)0.0137 (17)0.0345 (16)0.0027 (12)0.0056 (13)0.0020 (13)
C80.0307 (18)0.0146 (17)0.0347 (17)0.0018 (12)0.0099 (13)0.0023 (13)
C90.0272 (18)0.0195 (18)0.0347 (17)0.0006 (13)0.0044 (13)0.0005 (13)
C100.0333 (19)0.0197 (18)0.0322 (16)0.0007 (13)0.0052 (13)0.0029 (13)
C110.042 (2)0.0199 (18)0.0370 (18)0.0007 (14)0.0081 (14)0.0021 (13)
C120.044 (2)0.0243 (19)0.0300 (16)0.0043 (14)0.0064 (14)0.0065 (13)
N10.0394 (17)0.0154 (15)0.0257 (14)0.0026 (11)0.0013 (11)0.0027 (10)
N20.0342 (16)0.0130 (14)0.0297 (14)0.0001 (10)0.0021 (11)0.0018 (10)
O10.0532 (16)0.0191 (14)0.0330 (13)0.0021 (10)0.0007 (10)0.0033 (9)
O20.0459 (15)0.0148 (13)0.0400 (14)0.0017 (9)0.0005 (10)0.0008 (9)
Geometric parameters (Å, º) top
C1—O11.230 (4)C6—H60.9300
C1—N11.356 (4)C7—C91.417 (4)
C1—C21.518 (4)C7—C81.432 (4)
C2—O21.240 (4)C8—C101.425 (4)
C2—N21.349 (4)C9—C111.366 (4)
C3—C51.378 (4)C9—H90.9300
C3—N11.399 (4)C10—C121.367 (4)
C3—C41.420 (4)C10—H100.9300
C4—C61.364 (4)C11—C121.423 (5)
C4—N21.404 (4)C11—H110.9300
C5—C71.398 (4)C12—H120.9300
C5—H50.9300N1—H1N0.91 (4)
C6—C81.412 (4)N2—H2N0.94 (4)
O1—C1—N1123.8 (3)C6—C8—C10122.0 (3)
O1—C1—C2119.7 (3)C6—C8—C7119.1 (3)
N1—C1—C2116.5 (3)C10—C8—C7118.9 (3)
O2—C2—N2122.8 (3)C11—C9—C7121.2 (3)
O2—C2—C1119.4 (3)C11—C9—H9119.4
N2—C2—C1117.7 (3)C7—C9—H9119.4
C5—C3—N1121.7 (3)C12—C10—C8120.9 (3)
C5—C3—C4119.8 (3)C12—C10—H10119.6
N1—C3—C4118.5 (3)C8—C10—H10119.6
C6—C4—N2121.0 (3)C9—C11—C12120.4 (3)
C6—C4—C3120.7 (3)C9—C11—H11119.8
N2—C4—C3118.3 (3)C12—C11—H11119.8
C3—C5—C7120.8 (3)C10—C12—C11120.1 (3)
C3—C5—H5119.6C10—C12—H12120.0
C7—C5—H5119.6C11—C12—H12120.0
C4—C6—C8120.4 (3)C1—N1—C3124.6 (3)
C4—C6—H6119.8C1—N1—H1N117 (2)
C8—C6—H6119.8C3—N1—H1N118 (2)
C5—C7—C9122.2 (3)C2—N2—C4124.2 (3)
C5—C7—C8119.2 (3)C2—N2—H2N119 (3)
C9—C7—C8118.6 (3)C4—N2—H2N117 (3)
O1—C1—C2—O21.7 (5)C5—C7—C8—C10177.3 (3)
N1—C1—C2—O2176.8 (3)C9—C7—C8—C100.8 (4)
O1—C1—C2—N2179.3 (3)C5—C7—C9—C11178.1 (3)
N1—C1—C2—N20.8 (4)C8—C7—C9—C110.1 (5)
C5—C3—C4—C61.3 (5)C6—C8—C10—C12179.8 (3)
N1—C3—C4—C6177.9 (3)C7—C8—C10—C121.5 (5)
C5—C3—C4—N2179.3 (3)C7—C9—C11—C120.4 (5)
N1—C3—C4—N20.1 (4)C8—C10—C12—C111.3 (5)
N1—C3—C5—C7179.0 (3)C9—C11—C12—C100.4 (5)
C4—C3—C5—C70.2 (5)O1—C1—N1—C3178.1 (3)
N2—C4—C6—C8179.0 (2)C2—C1—N1—C33.5 (4)
C3—C4—C6—C81.1 (5)C5—C3—N1—C1177.6 (3)
C3—C5—C7—C9179.2 (3)C4—C3—N1—C13.2 (5)
C3—C5—C7—C81.2 (5)O2—C2—N2—C4179.7 (3)
C4—C6—C8—C10178.4 (3)C1—C2—N2—C42.2 (4)
C4—C6—C8—C70.3 (5)C6—C4—N2—C2179.5 (3)
C5—C7—C8—C61.4 (4)C3—C4—N2—C22.6 (5)
C9—C7—C8—C6179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (4)2.27 (4)2.866 (3)122 (3)
N2—H2N···O2ii0.94 (4)1.90 (4)2.843 (4)176 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+5/2; (ii) x, y1, z+2.

Experimental details

Crystal data
Chemical formulaC12H8N2O2
Mr212.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.1334 (15), 8.4229 (18), 15.292 (2)
β (°) 99.792 (14)
V3)905.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.649, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5294, 1773, 875
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.271, 0.92
No. of reflections1773
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.57

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.91 (4)2.27 (4)2.866 (3)122 (3)
N2—H2N···O2ii0.94 (4)1.90 (4)2.843 (4)176 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+5/2; (ii) x, y1, z+2.
 

Acknowledgements

FEM and MAA are grateful to the DAAD for PhD research fellowships and the DFG research unit "Towards Mol­ecular Spintronics" FOR 1154 for providing fellowships. The authors express sincere thanks to the CIM, WUS, and the Faculty of Medicine and Pharmaceutical Sciences of the University of Douala for financial support.

References

First citationAbdulmalic, M. A., Aliabadi, A., Petr, A., Krupskaya, Y., Kataev, V., Büchner, B., Hahn, T., Kortus, J. & Rüffer, T. (2012). Dalton Trans. In the press. doi:10.1039/C2DT31802D.  Google Scholar
First citationBräuer, B., Zahn, D. R. T., Rüffer, T. & Salvan, G. (2006). Chem. Phys. Lett. 432, 226–229.  Google Scholar
First citationBurrow, A. D., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Chem. Commun. pp. 97–99.  Google Scholar
First citationChowdhry, M. M., Mingos, D. M. P., White, A. J. P. & Williams, D. J. (1996). Chem. Commun. pp. 899–900.  CSD CrossRef Web of Science Google Scholar
First citationDai, J., Yamamoto, M., Kudora-Sowa, T., Meakawa, M., Suenaga, Y. & Munakata, M. (1997). Inorg. Chem. 36, 2688–2690.  CSD CrossRef CAS Web of Science Google Scholar
First citationEya'ane Meva, F. (2009). PhD thesis, Chemnitz University of Technology, Chemnitz, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunoz, M. C., Ruiz, R., Traianidis, M., Aukauloo, A., Cano, J., Journaux, Y., Fernandez, I. & Pedro, J. R. (1998). Angew. Chem. 110, 1933–1936.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J. 11, 4643–4654.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPardo, E., Ruiz-García, R., Lloret, F., Julve, M., Cano, J., Pasán, J., Ruiz-Pérez, J., Filali, Y., Chamoreau, L.-M. & Journaux, Y. (2008). Dalton Trans. pp. 2780–2805.  Web of Science CrossRef Google Scholar
First citationRüffer, T., Abdulmalic, M. A., Aliabadi, A., Petr, A. & Kataev, V. (2012). Dalton Trans. Accepted. doi: 10.1039/C2DT32259E.  Google Scholar
First citationRüffer, T., Bräuer, B., Powell, A. K., Hewitt, I. & Salvan, G. (2007). Inorg. Chim. Acta, 360, 3475–3483.  Google Scholar
First citationRuiz, R., Surville-Barland, C., Aukauloo, A., Anxolabehere-Mallart, E., Journaux, Y., Cano, J. & Muñoz, M. C. (1997). J. Chem. Soc. Dalton Trans. pp. 745–752.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvenson, C. (1976). Acta Chem. Scand. Ser. B, 30, 581–584.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3460-o3461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds