supporting information


Acta Cryst. (2012). E68, m1523    [ doi:10.1107/S1600536812047198 ]

Chlorido(4-methylpyridin-2-amine-[kappa]N1)(2-{[(4-methylpyridin-2-yl)imino-[kappa]N]methyl}phenolato-[kappa]O)copper(II)

B. Bhagyaraju, P. Sambasiva Rao and T. Swu

Abstract top

In the title complex, [Cu(C13H11N2O)Cl(C6H8N2)], the CuII atom adopts a distorted tetra­hedral geometry being coordinated by the phenolic O atom and the azomethine N atom of the Schiff base ligand N-salicyl­idene 2-amino­pyridine, and by the 2-amino­pyridine N atom and a Cl atom. The pyridyl N atom of the Schiff base and the imino N atom of the 4-methyl-pyridine-2-yl­imino ligand are not involved in the coordination. There is an intra­molecular N-H...N hydrogen bond involving the pyridine N atom and the amino group of the 2-amino­pyridine ligand. In the crystal, mol­ecules are linked via N-H...Cl hydrogen bonds, forming chains propagating along [001].

Comment top

The Schiff base, N-salicylidene 2-aminopyridine, has been widely studied as a potential tridentate ligand. For example, the complex Bis{2-[(2-pyridyl)iminomethyl]-phenolato}copper(II), has been prepared by (Miao et al., 2009), who reported that to a green solution of salicylaldehyde (0.19 mmol) and Cu(OAc)2.H2O (0.05 mmol) in ethanol they added slowly an enthanolic solution of 2-aminopyridine (0.22 mmol). The resulting mixture was allowed to stand and brown crystalline needles were obtained after 1 day. The same compound was prepared by an electrochemical method (Castineiras et al., 1989) and by a solution method (Parashar et al., 1988). We have used same procedure as (Miao et al., 2009), but using a 1:1:1 molar ratio that produced the yellow crystals of the title compound, whose crystal structure we report on herein.

In the title complex, Fig. 1, the copper atom has a slightly distorted tetahedral geometry. It coordinates to the phenolic atom O1 and the azomethine atom N4 of the Schiff base liagnd N-salicylidene 2-aminopyridine, and to the 2-aminopyridine atom N1 and a chlorine atom, Cl1. The Cu—O1 and Cu—N4 bond lengths are similar to those reported in related structures (Miao et al., 2009; Castineiras et al., 1989). The structure of the molecule is stablized by an intramolecular N-H..Cl hydrogen bond (Table 1).

In the crystal, the intermolecular N-H···Cl hydrogen bond (Fig. 2 and Table 1) plays an important role in linking the molecules to form chains propagating along the c axis, as shown in Fig. 3.

Related literature top

For the preparation of similar compounds, see: Miao et al. (2009); Parashar et al. (1988); Castineiras et al. (1989). For the crystal structures of related compounds, see: Castineiras et al. (1989); Miao et al. (2009).

Experimental top

A methanolic solution of 2-(((4-methyl-pyridine-2-yl)imino)methyl)phenol (0.01 moles) and 4-methylpyridin-2-amine (0.01 moles) was added slowly to a methanolic solution of copper chloride (0.01 moles). The resulting mixture was allowed to stand and yellow plate-like crystals were obtained after ca. 7 days.

Refinement top

The NH2 H-atoms were located in a difference Fourier map and refined with distances restraints: N-H = 0.86 (2) Å. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 and 0.96 Å, for CH and CH3 H atoms, respectively; Uiso = k × Ueq(N,C), where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the atom numbering. The displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···Cl bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along b axis of the crystal packing of the title compound.
[Figure 3] Fig. 3. A view of the N-H···Cl hydrogen bonded chain structure propagating along the c axis direction (dashed line; see Table 1 for details).
Chlorido(4-methylpyridin-2-amine-κN1)(2-{[(4-methylpyridin-2- yl)imino-κN]methyl}phenolato-κO)copper(II) top
Crystal data top
[Cu(C13H11N2O)Cl(C6H8N2)]F(000) = 860
Mr = 418.37Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 2251 reflections
a = 17.443 (4) Åθ = 2.8–29.4°
b = 11.2197 (19) ŵ = 1.34 mm1
c = 9.4435 (19) ÅT = 300 K
β = 92.67 (2)°Plate, yellow
V = 1846.1 (6) Å30.4 × 0.4 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3339 independent reflections
Radiation source: Enhance (Mo) X-ray Source2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1420
Tmin = 0.565, Tmax = 1.000k = 1310
7213 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
3339 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C13H11N2O)Cl(C6H8N2)]V = 1846.1 (6) Å3
Mr = 418.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.443 (4) ŵ = 1.34 mm1
b = 11.2197 (19) ÅT = 300 K
c = 9.4435 (19) Å0.4 × 0.4 × 0.06 mm
β = 92.67 (2)°
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2017 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 1.000Rint = 0.063
7213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.40 e Å3
3339 reflectionsΔρmin = 0.45 e Å3
243 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23453 (3)0.51797 (4)0.79066 (6)0.0389 (2)
Cl10.13907 (8)0.44704 (11)0.91654 (15)0.0642 (5)
O10.30823 (19)0.6041 (3)0.9125 (3)0.0528 (13)
N10.3004 (2)0.3846 (3)0.7218 (4)0.0385 (12)
N20.2006 (3)0.2818 (4)0.6107 (6)0.079 (2)
N30.1439 (2)0.5299 (3)0.5301 (5)0.0526 (16)
N40.2022 (2)0.6618 (3)0.6805 (4)0.0367 (12)
C10.2746 (3)0.2872 (4)0.6490 (5)0.0436 (17)
C20.3246 (3)0.1932 (4)0.6186 (5)0.0432 (17)
C30.3996 (3)0.1993 (4)0.6589 (5)0.0420 (17)
C40.4263 (3)0.3013 (4)0.7295 (5)0.0476 (17)
C50.3758 (3)0.3887 (4)0.7583 (5)0.0433 (17)
C60.4539 (3)0.0991 (4)0.6281 (5)0.061 (2)
C70.1478 (3)0.6438 (4)0.5666 (5)0.0389 (17)
C80.1030 (3)0.7309 (4)0.5036 (5)0.0424 (17)
C90.0524 (3)0.7024 (4)0.3933 (5)0.0476 (17)
C100.0505 (3)0.5841 (4)0.3494 (6)0.067 (2)
C110.0968 (4)0.5026 (5)0.4217 (7)0.077 (3)
C120.0006 (3)0.7932 (5)0.3246 (6)0.066 (2)
C130.3222 (3)0.7167 (4)0.9098 (5)0.0421 (17)
C140.2837 (3)0.7994 (4)0.8159 (5)0.0406 (17)
C150.3030 (3)0.9213 (4)0.8254 (5)0.0577 (19)
C160.3574 (4)0.9616 (5)0.9200 (6)0.072 (3)
C170.3958 (3)0.8815 (5)1.0102 (6)0.066 (2)
C180.3778 (3)0.7637 (4)1.0062 (5)0.053 (2)
C190.2287 (3)0.7673 (4)0.7090 (5)0.0428 (17)
H2NA0.184 (3)0.223 (3)0.559 (5)0.0950*
H20.305700.126300.570400.0520*
H2NB0.177 (3)0.348 (3)0.618 (6)0.0950*
H40.478000.309300.756300.0570*
H50.394400.455800.806500.0520*
H6A0.426500.037500.576400.0920*
H6B0.475200.067200.715600.0920*
H6C0.494500.128700.572600.0920*
H80.106800.809200.535600.0510*
H100.018600.560400.272900.0800*
H110.094800.423600.392100.0930*
H12A0.029000.830800.395100.0990*
H12B0.033200.755100.255500.0990*
H12C0.030800.852100.278800.0990*
H150.277700.975300.765000.0700*
H160.369001.042500.924700.0850*
H170.434200.908701.073800.0780*
H180.403300.712301.069700.0640*
H190.209100.829000.652300.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0416 (4)0.0315 (3)0.0429 (4)0.0040 (3)0.0052 (3)0.0010 (3)
Cl10.0576 (10)0.0592 (8)0.0768 (10)0.0139 (7)0.0154 (8)0.0244 (8)
O10.067 (3)0.0363 (18)0.053 (2)0.0006 (16)0.0208 (19)0.0021 (17)
N10.035 (2)0.034 (2)0.046 (2)0.0017 (18)0.004 (2)0.0007 (19)
N20.043 (3)0.052 (3)0.139 (5)0.006 (2)0.026 (3)0.049 (3)
N30.053 (3)0.041 (2)0.062 (3)0.003 (2)0.016 (2)0.006 (2)
N40.034 (2)0.040 (2)0.036 (2)0.0026 (18)0.0004 (19)0.0008 (19)
C10.037 (3)0.040 (3)0.053 (3)0.001 (2)0.005 (3)0.003 (3)
C20.045 (3)0.040 (3)0.044 (3)0.003 (2)0.003 (3)0.005 (2)
C30.046 (3)0.039 (3)0.041 (3)0.008 (2)0.003 (3)0.001 (2)
C40.033 (3)0.060 (3)0.049 (3)0.008 (3)0.006 (3)0.000 (3)
C50.042 (3)0.041 (3)0.046 (3)0.008 (2)0.009 (3)0.003 (2)
C60.060 (4)0.061 (3)0.063 (4)0.021 (3)0.008 (3)0.001 (3)
C70.038 (3)0.042 (3)0.037 (3)0.004 (2)0.006 (2)0.004 (2)
C80.045 (3)0.037 (3)0.045 (3)0.001 (2)0.001 (3)0.005 (2)
C90.037 (3)0.055 (3)0.051 (3)0.003 (3)0.004 (3)0.015 (3)
C100.062 (4)0.059 (4)0.077 (4)0.010 (3)0.026 (3)0.006 (3)
C110.084 (5)0.053 (3)0.092 (5)0.005 (3)0.027 (4)0.015 (3)
C120.053 (4)0.086 (4)0.058 (4)0.008 (3)0.011 (3)0.013 (3)
C130.038 (3)0.051 (3)0.038 (3)0.005 (2)0.008 (3)0.009 (3)
C140.048 (3)0.037 (3)0.037 (3)0.006 (2)0.004 (3)0.009 (2)
C150.069 (4)0.051 (3)0.053 (3)0.014 (3)0.002 (3)0.003 (3)
C160.084 (5)0.068 (4)0.062 (4)0.030 (4)0.001 (4)0.011 (3)
C170.065 (4)0.083 (4)0.049 (4)0.019 (3)0.001 (3)0.026 (3)
C180.049 (4)0.067 (4)0.043 (3)0.002 (3)0.008 (3)0.014 (3)
C190.041 (3)0.046 (3)0.042 (3)0.001 (2)0.007 (3)0.005 (3)
Geometric parameters (Å, º) top
Cu1—Cl12.2368 (16)C13—C181.402 (7)
Cu1—O11.942 (3)C13—C141.429 (7)
Cu1—N12.013 (4)C14—C191.407 (7)
Cu1—N32.865 (5)C14—C151.410 (6)
Cu1—N41.987 (4)C15—C161.351 (8)
O1—C131.287 (6)C16—C171.389 (8)
N1—C11.357 (6)C17—C181.359 (7)
N1—C51.345 (6)C2—H20.9300
N2—C11.326 (7)C4—H40.9300
N3—C71.325 (6)C5—H50.9300
N3—C111.319 (8)C6—H6A0.9600
N4—C71.415 (6)C6—H6B0.9600
N4—C191.295 (6)C6—H6C0.9600
N2—H2NB0.85 (4)C8—H80.9300
N2—H2NA0.86 (4)C10—H100.9300
C1—C21.407 (7)C11—H110.9300
C2—C31.347 (7)C12—H12A0.9600
C3—C61.507 (7)C12—H12B0.9600
C3—C41.394 (7)C12—H12C0.9600
C4—C51.354 (7)C15—H150.9300
C7—C81.370 (7)C16—H160.9300
C8—C91.371 (7)C17—H170.9300
C9—C101.391 (6)C18—H180.9300
C9—C121.490 (7)C19—H190.9300
C10—C111.380 (8)
Cl1—Cu1—O1110.53 (10)C14—C13—C18116.7 (4)
Cl1—Cu1—N1110.94 (11)C13—C14—C15119.1 (4)
Cl1—Cu1—N394.50 (9)C13—C14—C19124.3 (4)
Cl1—Cu1—N4111.53 (11)C15—C14—C19116.5 (4)
O1—Cu1—N1100.91 (14)C14—C15—C16121.7 (5)
O1—Cu1—N3144.00 (12)C15—C16—C17119.5 (5)
O1—Cu1—N494.01 (14)C16—C17—C18120.6 (5)
N1—Cu1—N393.31 (13)C13—C18—C17122.4 (5)
N1—Cu1—N4125.93 (15)N4—C19—C14127.5 (4)
N3—Cu1—N451.74 (13)C1—C2—H2120.00
Cu1—O1—C13126.7 (3)C3—C2—H2120.00
Cu1—N1—C1125.6 (3)C3—C4—H4121.00
Cu1—N1—C5117.3 (3)C5—C4—H4120.00
C1—N1—C5117.1 (4)N1—C5—H5118.00
Cu1—N3—C778.6 (3)C4—C5—H5118.00
Cu1—N3—C11162.7 (3)C3—C6—H6A109.00
C7—N3—C11116.7 (4)C3—C6—H6B109.00
Cu1—N4—C7116.5 (3)C3—C6—H6C109.00
Cu1—N4—C19122.9 (3)H6A—C6—H6B109.00
C7—N4—C19120.6 (4)H6A—C6—H6C109.00
H2NA—N2—H2NB124 (5)H6B—C6—H6C109.00
C1—N2—H2NB114 (3)C7—C8—H8120.00
C1—N2—H2NA119 (3)C9—C8—H8120.00
N2—C1—C2121.0 (4)C9—C10—H10121.00
N1—C1—N2118.1 (4)C11—C10—H10121.00
N1—C1—C2120.9 (5)N3—C11—H11118.00
C1—C2—C3120.5 (4)C10—C11—H11118.00
C2—C3—C4118.4 (4)C9—C12—H12A109.00
C2—C3—C6121.2 (4)C9—C12—H12B109.00
C4—C3—C6120.4 (5)C9—C12—H12C109.00
C3—C4—C5119.0 (5)H12A—C12—H12B110.00
N1—C5—C4124.2 (4)H12A—C12—H12C110.00
N3—C7—C8123.6 (5)H12B—C12—H12C109.00
N3—C7—N4111.1 (4)C14—C15—H15119.00
N4—C7—C8125.2 (4)C16—C15—H15119.00
C7—C8—C9119.8 (4)C15—C16—H16120.00
C8—C9—C10117.0 (4)C17—C16—H16120.00
C10—C9—C12121.2 (5)C16—C17—H17120.00
C8—C9—C12121.8 (4)C18—C17—H17120.00
C9—C10—C11118.7 (5)C13—C18—H18119.00
N3—C11—C10124.0 (5)C17—C18—H18119.00
O1—C13—C14124.4 (4)N4—C19—H19116.00
O1—C13—C18118.8 (4)C14—C19—H19116.00
Cl1—Cu1—O1—C13113.3 (4)C11—N3—C7—C83.8 (8)
N1—Cu1—O1—C13129.3 (4)C7—N3—C11—C102.4 (9)
N3—Cu1—O1—C1317.9 (5)Cu1—N4—C7—N317.2 (5)
N4—Cu1—O1—C131.5 (4)Cu1—N4—C7—C8161.1 (4)
Cl1—Cu1—N1—C152.5 (4)C19—N4—C7—N3162.7 (4)
Cl1—Cu1—N1—C5123.3 (3)C19—N4—C7—C819.0 (7)
O1—Cu1—N1—C1169.6 (4)Cu1—N4—C19—C141.3 (7)
O1—Cu1—N1—C56.1 (3)C7—N4—C19—C14178.6 (5)
N3—Cu1—N1—C143.6 (4)N1—C1—C2—C31.3 (7)
N3—Cu1—N1—C5140.6 (3)N2—C1—C2—C3179.5 (5)
N4—Cu1—N1—C187.2 (4)C1—C2—C3—C40.8 (7)
N4—Cu1—N1—C597.0 (4)C1—C2—C3—C6179.6 (4)
Cl1—Cu1—N3—C7104.9 (3)C2—C3—C4—C51.8 (7)
O1—Cu1—N3—C730.1 (4)C6—C3—C4—C5178.6 (4)
N1—Cu1—N3—C7143.8 (3)C3—C4—C5—N10.7 (7)
N4—Cu1—N3—C79.1 (3)N3—C7—C8—C92.2 (8)
Cl1—Cu1—N4—C768.9 (3)N4—C7—C8—C9179.8 (5)
Cl1—Cu1—N4—C19111.2 (4)C7—C8—C9—C101.1 (7)
O1—Cu1—N4—C7177.2 (3)C7—C8—C9—C12177.9 (5)
O1—Cu1—N4—C192.7 (4)C8—C9—C10—C112.4 (8)
N1—Cu1—N4—C770.6 (4)C12—C9—C10—C11176.6 (5)
N1—Cu1—N4—C19109.3 (4)C9—C10—C11—N30.7 (9)
N3—Cu1—N4—C79.4 (3)O1—C13—C14—C15178.6 (5)
N3—Cu1—N4—C19170.5 (4)O1—C13—C14—C193.8 (8)
Cu1—O1—C13—C141.3 (7)C18—C13—C14—C150.3 (7)
Cu1—O1—C13—C18179.9 (3)C18—C13—C14—C19177.3 (5)
Cu1—N1—C1—N24.9 (6)O1—C13—C18—C17179.9 (5)
Cu1—N1—C1—C2173.4 (3)C14—C13—C18—C171.0 (8)
C5—N1—C1—N2179.4 (5)C13—C14—C15—C160.6 (8)
C5—N1—C1—C22.4 (6)C19—C14—C15—C16177.2 (5)
Cu1—N1—C5—C4174.7 (4)C13—C14—C19—N42.4 (9)
C1—N1—C5—C41.4 (7)C15—C14—C19—N4179.9 (5)
Cu1—N3—C7—N410.8 (3)C14—C15—C16—C170.3 (9)
Cu1—N3—C7—C8167.5 (5)C15—C16—C17—C181.6 (9)
C11—N3—C7—N4177.9 (5)C16—C17—C18—C132.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NB···N30.85 (4)2.27 (4)3.039 (6)150 (5)
N2—H2NA···Cl1i0.86 (4)2.44 (4)3.305 (5)179 (7)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C13H11N2O)Cl(C6H8N2)]
Mr418.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)17.443 (4), 11.2197 (19), 9.4435 (19)
β (°) 92.67 (2)
V3)1846.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.4 × 0.4 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur, Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.565, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7213, 3339, 2017
Rint0.063
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.114, 0.94
No. of reflections3339
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NB···N30.85 (4)2.27 (4)3.039 (6)150 (5)
N2—H2NA···Cl1i0.86 (4)2.44 (4)3.305 (5)179 (7)
Symmetry code: (i) x, y+1/2, z1/2.
 
Acknowledgements top

BB thanks the Department of Science and Technolgy, New Delhi, India, for financial support and for providing the single-crystal X-ray diffractometer facility at the Department of Chemistry, Pondicherry University, under the DST–FIST program.