[Journal logo]

Volume 68 
Part 12 
Page o3259  
December 2012  

Received 25 October 2012
Accepted 28 October 2012
Online 3 November 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.034
wR = 0.097
Data-to-parameter ratio = 14.4
Details
Open access

3-Benzoyl-1-(2-methoxyphenyl)thiourea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com

In the title compound, C15H14N2O2S, the central C2N2OS moiety is planar (r.m.s. deviation of fitted atoms = 0.0336 Å). This is ascribed to the formation of an S(6) loop stabilized by an intramolecular N-H...O hydrogen bond; additional intramolecular N-H...O and C-H...S contacts are also noted. The dihedral angles between the central unit and the phenyl and benzene rings are 23.79 (7) and 29.52 (5)°, respectively. The thione S and ketone O atoms are mutually anti, as are the N-H H atoms; the O atoms lie to the same side of the molecule. Centrosymmetric eight-membered {...HNC=S}2 synthons feature in the crystal packing. The resulting inversion dimers stack along the a axis and are connected into a three-dimensional structure by C-H...O and C-H...[pi] interactions.

Related literature

For complexation of N-benzoyl-N'-arylthiourea derivatives to transition metals, see: Selvakumaran et al. (2011[Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.]). For the structure of the unsubstituted parent compound, see: Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2S

  • Mr = 286.34

  • Monoclinic, P 21 /c

  • a = 5.9358 (1) Å

  • b = 25.6916 (4) Å

  • c = 9.0535 (1) Å

  • [beta] = 92.065 (1)°

  • V = 1379.76 (4) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 2.11 mm-1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.467, Tmax = 1.000

  • 5143 measured reflections

  • 2721 independent reflections

  • 2505 reflections with I > 2[sigma](I)

  • Rint = 0.016

Refinement
  • R[F2 > 2[sigma](F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 2721 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.27 e Å-3

  • [Delta][rho]min = -0.40 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9-C14 benzene ring.

D-H...A D-H H...A D...A D-H...A
N2-H2n...O1 0.905 (18) 1.867 (18) 2.6316 (15) 141.0 (16)
C10-H10...S1 0.95 2.68 3.2241 (13) 117
N2-H2n...O2 0.90 (2) 2.231 (19) 2.5819 (15) 102.5 (14)
N1-H1n...S1i 0.902 (18) 2.636 (18) 3.4976 (12) 160.1 (15)
C15-H15B...O1ii 0.98 2.57 3.4273 (19) 146
C15-H15C...Cg1iii 0.98 2.81 3.6248 (17) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2519 ).


Acknowledgements

NS thanks NITT for a fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Selvakumaran, N., Ng, S. W., Tiekink, E. R. T. & Karvembu, R. (2011). Inorg. Chim. Acta, 376, 278-284.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.  [CSD] [CrossRef] [details]


Acta Cryst (2012). E68, o3259  [ doi:10.1107/S160053681204456X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.