[Journal logo]

Volume 68 
Part 12 
Page o3349  
December 2012  

Received 30 October 2012
Accepted 8 November 2012
Online 14 November 2012

Key indicators
Single-crystal X-ray study
T = 200 K
Mean [sigma](C-C) = 0.009 Å
Disorder in main residue
R = 0.040
wR = 0.082
Data-to-parameter ratio = 13.1
Details
Open access

Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au

In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid), C9H7N+·C9H5INO4S-·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming [pi]-[pi]-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hydroxy O-H...O and quinolinium N-H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

Related literature

For the crystal structure of ferron, see: Balasubramanian & Muthiah (1996[Balasubramanian, T. & Muthiah, P. T. (1996). Acta Cryst. C52, 2072-2073.]). For analytical applications of ferron, see: Vogel (1964[Vogel, A. I. (1964). Textbook of Macro and Semi-Micro Qualitative Inorganic Analysis, 4th ed., p. 266. London: Longmans.]). For the crystal structures of other non-zwitterionic compounds of ferron, see: Hemamalini et al. (2004[Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284-o286.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600-o603.], 2007[Smith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. C63, o405-o407.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N+·C9H5INO4S-·0.8H2O

  • Mr = 494.69

  • Orthorhombic, P c a 21

  • a = 16.2403 (5) Å

  • b = 7.1539 (3) Å

  • c = 15.2458 (5) Å

  • V = 1771.28 (11) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.96 mm-1

  • T = 200 K

  • 0.32 × 0.25 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.906, Tmax = 0.980

  • 6143 measured reflections

  • 3207 independent reflections

  • 2709 reflections with I > 2[sigma](I)

  • Rint = 0.028

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.082

  • S = 1.18

  • 3207 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.65 e Å-3

  • [Delta][rho]min = -0.66 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 789 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1A-H1A...O53i 0.86 1.97 2.783 (10) 157
N1B-H1B...O53i 0.86 1.88 2.725 (16) 166
O8-H8...O52ii 0.81 2.13 2.769 (7) 135
O1W-H11W...O52 0.89 2.18 3.066 (9) 179
O1W-H12W...O51iii 0.90 2.18 3.080 (8) 178
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+2, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2523 ).


Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  [CrossRef] [ISI] [details]
Balasubramanian, T. & Muthiah, P. T. (1996). Acta Cryst. C52, 2072-2073.  [CSD] [CrossRef] [details]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Hemamalini, M., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. C60, o284-o286.  [CSD] [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. C60, o600-o603.  [CSD] [CrossRef] [details]
Smith, G., Wermuth, U. D. & Healy, P. C. (2007). Acta Cryst. C63, o405-o407.  [CSD] [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Vogel, A. I. (1964). Textbook of Macro and Semi-Micro Qualitative Inorganic Analysis, 4th ed., p. 266. London: Longmans.


Acta Cryst (2012). E68, o3349  [ doi:10.1107/S1600536812046247 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.