[Journal logo]

Volume 68 
Part 12 
Pages o3383-o3384  
December 2012  

Received 5 November 2012
Accepted 8 November 2012
Online 17 November 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
R = 0.055
wR = 0.149
Data-to-parameter ratio = 12.7
Details
Open access

4-[(E)-2-(Pyridin-2-yl)ethenyl]pyridine-terephthalic acid (2/1)

aFacultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, Mexico, and bCentro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, Mexico
Correspondence e-mail: cenriqueza@yahoo.com.mx

The title 2:1 co-crystal, 2C12H10N2·C8H6O4, crystallizes with one molecule of 4-[(E)-2-(pyridin-2-yl)ethenyl]pyridine (A) and one half-molecule of terephthalic acid (B) in the asymmetric unit. In the crystal, the components are linked through heterodimeric COOH...Npyridine synthons, forming linear aggregates of composition -A-B-A-B-. Further linkage through weak C-H...O and C-H...[pi] interactions gives two-dimensional hydrogen-bonded undulating sheets propagating in the [100] and [010] directions. These layers are connected through additional weak C-H...O contacts, forming a three-dimensional structure.

Related literature

For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.]); Simon & Bassoul (2000[Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH.]); Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]); Weyna et al. (2009[Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]); Yan et al. (2012[Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121-5123.]). For background to related co-crystals, see: Santra et al. (2008[Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673-1676.]); Moon & Park (2012[Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.]); Ebenezer & Muthiah (2012[Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2·0.5C8H6O4

  • Mr = 265.28

  • Monoclinic, P 21 /n

  • a = 6.3821 (8) Å

  • b = 32.301 (4) Å

  • c = 6.8721 (8) Å

  • [beta] = 111.440 (2)°

  • V = 1318.6 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 293 K

  • 0.48 × 0.41 × 0.34 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.96, Tmax = 0.97

  • 12715 measured reflections

  • 2328 independent reflections

  • 2119 reflections with I > 2[sigma](I)

  • Rint = 0.033

Refinement
  • R[F2 > 2[sigma](F2)] = 0.055

  • wR(F2) = 0.149

  • S = 1.17

  • 2328 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.14 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C12-C16 pyridine ring.

D-H...A D-H H...A D...A D-H...A
O1-H1'...N1i 0.84 1.77 2.604 (2) 177
C9-H9...O2ii 0.93 2.67 3.285 (3) 125
C13-H13...O2iii 0.93 2.52 3.396 (2) 157
C5-H5...O2iv 0.93 2.64 3.135 (2) 114
C16-H16...Cgv 0.93 2.86 3.627 (3) 141
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) x-1, y, z; (iv) x-1, y, z-1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2525 ).


Acknowledgements

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/048). PCM thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

References

Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.  [CSD] [CrossRef] [ChemPort]
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.  [CrossRef] [ChemPort] [ISI]
Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.  [CSD] [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.  [CSD] [CrossRef] [details]
Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673-1676.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.  [CSD] [CrossRef] [ChemPort]
Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121-5123.  [ISI] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2012). E68, o3383-o3384   [ doi:10.1107/S1600536812046284 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.