supplementary materials


su2525 scheme

Acta Cryst. (2012). E68, o3383-o3384    [ doi:10.1107/S1600536812046284 ]

4-[(E)-2-(Pyridin-2-yl)ethenyl]pyridine-terephthalic acid (2/1)

P. Castro-Montes, J. A. Guerrero-Alvarez, H. Hopfl, J. J. Campos-Gaxiola and A. Cruz-Enriquez

Abstract top

The title 2:1 co-crystal, 2C12H10N2·C8H6O4, crystallizes with one molecule of 4-[(E)-2-(pyridin-2-yl)ethenyl]pyridine (A) and one half-molecule of terephthalic acid (B) in the asymmetric unit. In the crystal, the components are linked through heterodimeric COOH...Npyridine synthons, forming linear aggregates of composition -A-B-A-B-. Further linkage through weak C-H...O and C-H...[pi] interactions gives two-dimensional hydrogen-bonded undulating sheets propagating in the [100] and [010] directions. These layers are connected through additional weak C-H...O contacts, forming a three-dimensional structure.

Comment top

Supramolecular crystal engineering has attracted growing interest over the past few decades because of its importance in biological systems, molecular recognition (Simon et al., 2000), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and ππ interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine molecules (Bhogala & Nangia, 2003; Santra et al., 2008; Moon & Park, 2012; Ebenezer & Muthiah, 2012). Herein, we report on the solid-state structure of a 2:1 co-crystal formed between an asymmetric bipyridine [4-((E)-2-(pyridin-2-yl)ethenyl)pyridine] and a symmetric dicarboxylic acid [terephthalic acid].

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one molecule of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and half a molecule of terephthalic acid located on a crystallographic inversion center. Both components have almost planar molecular structures as seen from the C10—C11—C12—N2 torsion angle of -4.2 (3)° for the bipyridine molecule and the O1—C4—C1—C2 torsion angle of -6.0 (3)° for the terephthalic acid.

In the crystal lattice, each terephthalic acid is linked to two bipyridine molecules through intermolecular O—H···N and C—H···O interactions giving the well known heterodimeric COOH···Npyridine synthon. The so formed linear aggregates are connected through additional weak C—H···O contacts to generate tapes parallel to the (1–41) series of planes, which through C—H···π contacts generate undulating two-dimensional supramolecular layers (Fig. 2 and Table 1). In the third dimension, these layers are interconnected through additional weak C—H···O contacts. Interestingly, the 2-pyridine nitrogen atom is not involved in short intermolecular hydrogen bonding interactions.

Related literature top

For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Simon & Bassoul (2000); Bhogala & Nangia (2003); Weyna et al. (2009); Yan et al. (2012). For background to related co-crystals, see: Santra et al. (2008); Moon & Park (2012); Ebenezer & Muthiah (2012).

Experimental top

0.200 g (1.10 mmol) of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and 0.180 g (1.10 mmol) of terephthalic acid were ground in a mortar for 20 min after adding 3 drops of CH3OH. The resulting powder was then dissolved in 10 ml of CH3OH and kept for crystallization by slow evaporation of the solvent at ambient conditions to give colourless block-like crystals, suitable for single-crystal X-ray diffraction analysis, after one week. Spectroscopic and TGA data for the title compound are available in the archived CIF.

Refinement top

H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [aryl C—H = 0.93 A and Uiso(H) = 1.2Ueq(C)]. The H atom bonded to O was initially located in a difference Fourier map, then the position was refined with the O—H distance restraint of 0.84 (1) Å with Uiso(H) = 1.5Ueq(O). One reflection that was located behind the beam stop has been omitted during the refinement (020).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components in the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code: (i) -x + 2, -y, -z + 1].
[Figure 2] Fig. 2. View of the two-dimensional supramolecular layer formed through O—H···N, C—H···O and C—H···π interactions (dashed lines; see Table 1 for details), in the crystal structure of the title compound.
4-[(E)-2-(Pyridin-2-yl)ethenyl]pyridine–terephthalic acid (2/1) top
Crystal data top
C12H10N2·0.5C8H6O4F(000) = 556
Mr = 265.28Dx = 1.336 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4971 reflections
a = 6.3821 (8) Åθ = 2.5–27.1°
b = 32.301 (4) ŵ = 0.09 mm1
c = 6.8721 (8) ÅT = 293 K
β = 111.440 (2)°Block, colourless
V = 1318.6 (3) Å30.48 × 0.41 × 0.34 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2328 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.96, Tmax = 0.97k = 3838
12715 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2452P]
where P = (Fo2 + 2Fc2)/3
2328 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C12H10N2·0.5C8H6O4V = 1318.6 (3) Å3
Mr = 265.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3821 (8) ŵ = 0.09 mm1
b = 32.301 (4) ÅT = 293 K
c = 6.8721 (8) Å0.48 × 0.41 × 0.34 mm
β = 111.440 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2328 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2119 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.97Rint = 0.033
12715 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149Δρmax = 0.14 e Å3
S = 1.17Δρmin = 0.20 e Å3
2328 reflectionsAbsolute structure: ?
184 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Experimental. Spectroscopic and TGA data for the title compound:

IR (KBr): 3056, 2944, 1706, 1683, 1606, 1581, 1504, 1425, 1290 y 731 cm-1. 1H-RMN (200 MHz, DMSO-d6, TMS): δ 8.59 (m, 3H), 8.04 (s, 4H), 7.83 (td, J = 0.8, 4 Hz, 1H), 7.61 (m, 5H), 7.32 (m, 1H). TGA Calcd. for 2 C12H10N2: 68.69. Found: 69.27% (303 - 533 K).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7604 (3)0.03567 (5)0.8732 (2)0.0626 (4)
H1'0.752 (4)0.0508 (7)0.969 (3)0.094*
O21.0571 (2)0.07552 (4)0.9137 (2)0.0646 (4)
C10.9678 (3)0.02216 (5)0.6602 (3)0.0419 (4)
C20.8138 (3)0.00755 (6)0.5490 (3)0.0497 (5)
H20.68760.01280.58240.060*
C31.1549 (3)0.02934 (6)0.6094 (3)0.0502 (5)
H31.26030.04910.68300.060*
C40.9339 (3)0.04711 (6)0.8289 (3)0.0478 (5)
N10.7178 (3)0.08162 (5)0.1678 (2)0.0525 (4)
N20.6102 (3)0.20912 (5)0.9682 (3)0.0577 (5)
C50.5534 (3)0.07399 (6)0.2373 (3)0.0525 (5)
H50.45590.05210.17840.063*
C60.5203 (3)0.09677 (6)0.3915 (3)0.0515 (5)
H60.40200.09030.43460.062*
C70.6625 (3)0.12946 (6)0.4837 (3)0.0471 (5)
C80.8332 (3)0.13732 (7)0.4096 (3)0.0567 (5)
H80.93300.15900.46510.068*
C90.8553 (4)0.11300 (7)0.2539 (3)0.0580 (5)
H90.97140.11880.20670.070*
C100.6360 (3)0.15554 (6)0.6476 (3)0.0519 (5)
H100.73280.17810.69110.062*
C110.4900 (3)0.15052 (6)0.7397 (3)0.0509 (5)
H110.39480.12770.69960.061*
C120.4641 (3)0.17767 (5)0.8998 (3)0.0472 (5)
C130.2917 (3)0.17128 (6)0.9726 (3)0.0545 (5)
H130.19410.14900.92380.065*
C140.2652 (4)0.19789 (7)1.1171 (3)0.0628 (6)
H140.14810.19421.16540.075*
C150.4136 (4)0.22994 (7)1.1891 (3)0.0656 (6)
H150.40080.24841.28800.079*
C160.5813 (4)0.23397 (7)1.1110 (4)0.0682 (6)
H160.68270.25571.16130.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (9)0.0688 (10)0.0642 (9)0.0138 (7)0.0414 (8)0.0204 (7)
O20.0679 (9)0.0625 (9)0.0677 (9)0.0156 (7)0.0300 (8)0.0246 (7)
C10.0449 (10)0.0379 (9)0.0434 (10)0.0019 (7)0.0166 (8)0.0039 (7)
C20.0455 (10)0.0521 (11)0.0588 (11)0.0072 (8)0.0276 (9)0.0060 (9)
C30.0508 (11)0.0474 (10)0.0553 (11)0.0111 (8)0.0228 (9)0.0094 (8)
C40.0498 (10)0.0485 (11)0.0452 (10)0.0027 (8)0.0174 (8)0.0011 (8)
N10.0618 (10)0.0534 (9)0.0457 (9)0.0075 (8)0.0237 (8)0.0007 (7)
N20.0646 (11)0.0492 (9)0.0602 (10)0.0050 (8)0.0238 (8)0.0120 (8)
C50.0594 (12)0.0499 (11)0.0494 (11)0.0002 (9)0.0215 (9)0.0047 (8)
C60.0560 (11)0.0508 (11)0.0521 (11)0.0006 (9)0.0250 (9)0.0039 (8)
C70.0525 (11)0.0440 (10)0.0443 (10)0.0072 (8)0.0170 (8)0.0036 (8)
C80.0592 (12)0.0568 (12)0.0559 (11)0.0050 (9)0.0232 (10)0.0035 (9)
C90.0620 (12)0.0632 (13)0.0576 (12)0.0011 (10)0.0323 (10)0.0025 (10)
C100.0596 (11)0.0439 (10)0.0522 (11)0.0025 (8)0.0205 (9)0.0047 (8)
C110.0594 (11)0.0433 (10)0.0499 (11)0.0015 (9)0.0199 (9)0.0059 (8)
C120.0555 (11)0.0399 (10)0.0439 (10)0.0051 (8)0.0154 (8)0.0020 (7)
C130.0643 (12)0.0461 (11)0.0548 (11)0.0005 (9)0.0239 (10)0.0014 (8)
C140.0770 (14)0.0600 (13)0.0610 (12)0.0113 (11)0.0367 (11)0.0038 (10)
C150.0885 (16)0.0541 (12)0.0562 (12)0.0142 (11)0.0288 (11)0.0072 (10)
C160.0810 (15)0.0527 (12)0.0669 (13)0.0062 (11)0.0224 (12)0.0188 (10)
Geometric parameters (Å, º) top
O1—C41.305 (2)C7—C81.384 (3)
O1—H1'0.8401 (10)C7—C101.465 (3)
O2—C41.210 (2)C8—C91.376 (3)
C1—C31.381 (2)C8—H80.9300
C1—C21.386 (3)C9—H90.9300
C1—C41.491 (3)C10—C111.314 (3)
C2—C3i1.371 (3)C10—H100.9300
C2—H20.9300C11—C121.463 (3)
C3—C2i1.371 (3)C11—H110.9300
C3—H30.9300C12—C131.380 (3)
N1—C51.325 (2)C13—C141.369 (3)
N1—C91.330 (3)C13—H130.9300
N2—C161.332 (3)C14—C151.368 (3)
N2—C121.342 (2)C14—H140.9300
C5—C61.369 (3)C15—C161.368 (3)
C5—H50.9300C15—H150.9300
C6—C71.386 (3)C16—H160.9300
C6—H60.9300
C4—O1—H1'108.9 (19)C7—C8—H8120.0
C3—C1—C2118.76 (17)N1—C9—C8122.86 (19)
C3—C1—C4119.37 (16)N1—C9—H9118.6
C2—C1—C4121.86 (16)C8—C9—H9118.6
C3i—C2—C1120.91 (17)C11—C10—C7126.94 (18)
C3i—C2—H2119.5C11—C10—H10116.5
C1—C2—H2119.5C7—C10—H10116.5
C2i—C3—C1120.33 (17)C10—C11—C12125.68 (18)
C2i—C3—H3119.8C10—C11—H11117.2
C1—C3—H3119.8C12—C11—H11117.2
O2—C4—O1124.02 (17)N2—C12—C13122.00 (17)
O2—C4—C1122.08 (17)N2—C12—C11117.51 (17)
O1—C4—C1113.89 (16)C13—C12—C11120.47 (17)
C5—N1—C9117.55 (16)C14—C13—C12119.7 (2)
C16—N2—C12116.65 (18)C14—C13—H13120.2
N1—C5—C6123.07 (18)C12—C13—H13120.2
N1—C5—H5118.5C15—C14—C13119.0 (2)
C6—C5—H5118.5C15—C14—H14120.5
C5—C6—C7120.20 (18)C13—C14—H14120.5
C5—C6—H6119.9C14—C15—C16117.86 (19)
C7—C6—H6119.9C14—C15—H15121.1
C8—C7—C6116.35 (17)C16—C15—H15121.1
C8—C7—C10120.33 (18)N2—C16—C15124.8 (2)
C6—C7—C10123.31 (17)N2—C16—H16117.6
C9—C8—C7119.96 (19)C15—C16—H16117.6
C9—C8—H8120.0
C3—C1—C2—C3i0.4 (3)C7—C8—C9—N10.2 (3)
C4—C1—C2—C3i178.17 (17)C8—C7—C10—C11176.30 (19)
C2—C1—C3—C2i0.4 (3)C6—C7—C10—C115.1 (3)
C4—C1—C3—C2i178.21 (17)C7—C10—C11—C12178.50 (17)
C3—C1—C4—O25.2 (3)C16—N2—C12—C130.2 (3)
C2—C1—C4—O2173.37 (18)C16—N2—C12—C11178.75 (18)
C3—C1—C4—O1175.43 (17)C10—C11—C12—N24.2 (3)
C2—C1—C4—O16.0 (3)C10—C11—C12—C13174.40 (19)
C9—N1—C5—C60.0 (3)N2—C12—C13—C140.8 (3)
N1—C5—C6—C70.3 (3)C11—C12—C13—C14177.69 (18)
C5—C6—C7—C80.5 (3)C12—C13—C14—C151.2 (3)
C5—C6—C7—C10179.21 (18)C13—C14—C15—C160.5 (3)
C6—C7—C8—C90.5 (3)C12—N2—C16—C150.9 (3)
C10—C7—C8—C9179.21 (18)C14—C15—C16—N20.6 (4)
C5—N1—C9—C80.1 (3)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C12–C16 pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.841.772.604 (2)177
C9—H9···O2iii0.932.673.285 (3)125
C13—H13···O2iv0.932.523.396 (2)157
C5—H5···O2v0.932.643.135 (2)114
C16—H16···Cgvi0.932.863.627 (3)141
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z; (v) x1, y, z1; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C12–C16 pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1'···N1i0.841.772.604 (2)177
C9—H9···O2ii0.932.673.285 (3)125
C13—H13···O2iii0.932.523.396 (2)157
C5—H5···O2iv0.932.643.135 (2)114
C16—H16···Cgv0.932.863.627 (3)141
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x1, y, z; (iv) x1, y, z1; (v) x+1/2, y+1/2, z+1/2.
Acknowledgements top

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/048). PCM thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

references
References top

Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.

Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.

Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.

Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673–1676.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering. Berlin: Wiley-VCH.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.

Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123.