metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis{di­cyclo­hex­yl[4-(di­methyl­amino)­phen­yl]phosphane-κP}platinum(II) di­chloro­methane disolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 6 November 2012; accepted 26 November 2012; online 30 November 2012)

In the title complex, trans-[PtCl2{P(C6H11)2(4-Me2NC6H4)}2]·2CH2Cl2, the PtII atom is located on an inversion centre, resulting in a trans-square-planar geometry. Important geometric parameters are the Pt—P and Pt—Cl bond lengths of 2.3258 (6) and 2.3106 (6) Å, respectively, and the P—Pt—Cl angles of 89.64 (2) and 90.36 (2)°. The effective cone angle for the dicyclo­hex­yl[4-(dimethyl­amino)­phen­yl]phosphane unit was calculated to be 164°. The compound crystallizes with two dichloro­methane solvent mol­ecules; one of which is severely disordered and was treated using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. Upper Saddle River, New Jersey, USA: Prentice Hall.]). For related compounds, see: Johansson et al. (2002[Johansson, M. H., Otto, S. & Oskarsson, Å. (2002). Acta Cryst. B58, 244-250.]). For similar R-P2PtCl2 compounds, see: Lutz et al. (2005[Lutz, M., Spek, A. L., Kreiter, R., Klein Gebbink, R. J. M. & Koten, G. (2005). Acta Cryst. E61, m2728-m2729.]). For the synthesis of starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]). For use of the SQUEEZE routine in PLATON to remove the contribution of disordered solvents, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For background to cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C20H32NP)2]·2CH2Cl2

  • Mr = 1070.70

  • Monoclinic, C 2/c

  • a = 19.4146 (9) Å

  • b = 13.1517 (6) Å

  • c = 19.3459 (9) Å

  • β = 94.660 (2)°

  • V = 4923.4 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.16 mm−1

  • T = 100 K

  • 0.26 × 0.24 × 0.16 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.199, Tmax = 0.322

  • 56178 measured reflections

  • 4239 independent reflections

  • 4069 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.08

  • 4239 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.72 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). [PtCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PtCl2(COD)]. As part of a systematic investigation involving complexes with the general formula cis/trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), we have synthesized the title compound and report herein on its crystal structure.

In the title compound, Fig. 1, the Pt atom is located on an inversion center with each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, square planar and the Pt atom is not elevated out of the coordinating atom plane. All the bond angles in the coordination polyhedron are close to their ideal value of 90°, with P1—Pt1—Cl1 = 90.4 (2)° and P1—Pt1—Cli = 89.6 (2)°. As required by the crystallographic symmetry, the P1—Pt1—Pi and Cl1—Pt1—Cli angles are both 180° [symmetry code: (i) -x+3/2, -y+1/2, -z.].

To describe the steric demand of the phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound (and adjusting the Pt—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 164°.

The title compound compares well with other closely related PtII complexes reported in the literature containing two chloride and two tertiary phosphine ligands in a trans geometry (Lutz et al., 2005). The Pt—P and Pt—Cl bond distances of 2.326 (6) and 2.311 (6) Å, respectively for the title compound, fit well into the typical range for complexes of this kind. The title compound crystallizes as a solvated complex which is common for these type of PtII complexes (Johansson et al., 2002).

The title compound crystallizes with two molecules of dichloromethane. One of these molecules was initially modelled as a severely disordered molecule. We subsequently removed the disordered dichloromethane molecule by applying the SQUEEZE routine as found in PLATON (Spek, 2009).

Related literature top

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Johansson et al. (2002). For similar R-P2PtCl2 compounds, see: Lutz et al. (2005). For the synthesis of starting materials, see: Drew & Doyle (1990). For use of the SQUEEZE routine in PLATON to remove the contribution of disordered solvents , see: Spek (2009). For background to cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Dichloro(1,5-cyclooctadiene)platinum(II), [PtCl2(COD)], was prepared according to the literature procedure (Drew & Doyle, 1990). A solution of dicyclohexyl-[4-(N,N-dimethylamino)phenyl]phosphine (63.5 mg, 0.2 mmol) in dichloromethane (2 cm3) was added to a solution of [PtCl2(COD)] (37.4 mg, 0.1 mmol) in dichloromethane (3 cm3). Slow evaporation of the solvent gave colourless crystals of the title compound.

Refinement top

The aromatic, methine, methyl and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95, 1.00, 0.98 and 0.99 Å, respectively) and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms, and = 1.2 for other H atoms. Methyl torsion angles were refined from electron density.

Large thermal motion of one of the dichloromethane solvate molecules, held only by weak intermolecular hydrogen bonding, is observed. This was initially treated anisotropically as distorted over two partially occupied sites generated by symmetry, with atom C4 restrained isotropically. Different disordered models resulted in unstable refinement cycles. Placement of H atoms on C4 also resulted in unstable refinement. This procedure resulted in unsatisfactory refinements and the molecule was removed by applying the SQUEEZE routine in PLATON (Spek, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom numbering and the ordered dichloromethane solvent molecule. The displacement ellipsoids are drawn at the 50% probability level [Symmetry code: (i) -x+3/2, -y+1/2, -z].
trans-Dichloridobis{dicyclohexyl[4-(dimethylamino)phenyl]phosphane-κP}platinum(II) dichloromethane disolvate top
Crystal data top
[PtCl2(C20H32NP)2]·2CH2Cl2F(000) = 2176
Mr = 1070.70Dx = 1.445 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9651 reflections
a = 19.4146 (9) Åθ = 4.1–65.7°
b = 13.1517 (6) ŵ = 9.16 mm1
c = 19.3459 (9) ÅT = 100 K
β = 94.660 (2)°Cuboid, colourless
V = 4923.4 (4) Å30.26 × 0.24 × 0.16 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
4239 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source4069 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.045
Detector resolution: 8.4 pixels mm-1θmax = 66.2°, θmin = 4.1°
ϕ and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1415
Tmin = 0.199, Tmax = 0.322l = 2221
56178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P]
where P = (Fo2 + 2Fc2)/3
4239 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.72 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[PtCl2(C20H32NP)2]·2CH2Cl2V = 4923.4 (4) Å3
Mr = 1070.70Z = 4
Monoclinic, C2/cCu Kα radiation
a = 19.4146 (9) ŵ = 9.16 mm1
b = 13.1517 (6) ÅT = 100 K
c = 19.3459 (9) Å0.26 × 0.24 × 0.16 mm
β = 94.660 (2)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
4239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4069 reflections with I > 2σ(I)
Tmin = 0.199, Tmax = 0.322Rint = 0.045
56178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P]
where P = (Fo2 + 2Fc2)/3
4239 reflectionsΔρmax = 1.72 e Å3
244 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Highly disordered solvate molecule is observed, resulting in residual electron density around the C4 atom. Different disordered models, however, resulted in unstable refinement cycles. Placement of H atoms on C4 also resulted in unstable refinement. This procedure resulted in unsatisfactory refinements and the molecule was removed by applying the SQUEEZE routine as found in PLATON (Spek, 2003).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.750.2500.01460 (8)
Cl10.85498 (3)0.19559 (5)0.05181 (3)0.02286 (14)
P10.69307 (3)0.17595 (4)0.08851 (3)0.01619 (13)
C310.74703 (13)0.15612 (19)0.17086 (12)0.0202 (5)
H1310.79010.12060.15910.024*
C340.78157 (15)0.1765 (2)0.32170 (14)0.0321 (6)
H13A0.74030.21140.3370.039*
H13B0.81420.16510.3630.039*
C360.76895 (17)0.25841 (19)0.20359 (17)0.0241 (7)
H13C0.79390.29850.17020.029*
H13D0.72730.29720.2140.029*
C110.61712 (16)0.24227 (17)0.11403 (15)0.0179 (6)
C150.50367 (17)0.24432 (17)0.15855 (16)0.0197 (6)
H1150.46540.20750.17340.024*
C260.72650 (14)0.0195 (2)0.04868 (15)0.0269 (6)
H12A0.75220.01050.01150.032*
H12B0.7580.02290.09150.032*
C160.56012 (13)0.19181 (19)0.13759 (12)0.0193 (5)
H1160.56020.11960.13930.023*
C130.55973 (13)0.40207 (18)0.13530 (12)0.0192 (5)
H1130.56050.47430.13470.023*
C350.81549 (19)0.2434 (2)0.27030 (18)0.0302 (8)
H13E0.85950.21190.2590.036*
H13F0.82630.31040.29180.036*
C250.70229 (16)0.1267 (2)0.02768 (17)0.0352 (7)
H12C0.74270.1680.0170.042*
H12D0.68120.15910.0670.042*
C240.65002 (17)0.1253 (2)0.03515 (16)0.0365 (7)
H12E0.63350.19540.04530.044*
H12F0.67260.10030.0760.044*
C320.71270 (14)0.0884 (2)0.22298 (13)0.0246 (5)
H13G0.66870.11980.23450.029*
H13H0.7020.02110.20180.029*
C120.61541 (13)0.34844 (19)0.11366 (12)0.0188 (5)
H1120.65350.38480.09810.023*
Cl20.03909 (4)0.22618 (7)0.10388 (4)0.04094 (18)
Cl30.09563 (4)0.09162 (6)0.00234 (4)0.03576 (17)
N10.44579 (11)0.40351 (16)0.17961 (11)0.0214 (4)
C140.50191 (13)0.35131 (19)0.15818 (12)0.0192 (5)
C210.66396 (13)0.04799 (19)0.06127 (13)0.0204 (5)
H1210.63980.01720.09990.025*
C20.38221 (13)0.3494 (2)0.18892 (14)0.0250 (5)
H2A0.3660.31560.14550.038*
H2B0.3470.39760.2020.038*
H2C0.39060.29850.22560.038*
C30.02418 (15)0.1670 (2)0.02159 (15)0.0327 (6)
H3A0.01760.12370.02120.039*
H3B0.01570.21980.01460.039*
C330.76035 (15)0.0747 (2)0.28947 (13)0.0305 (6)
H13I0.73620.03410.32320.037*
H13J0.80220.03670.27860.037*
C10.44126 (15)0.5125 (2)0.17206 (16)0.0310 (6)
H1A0.48490.54350.19030.047*
H1B0.40350.53820.19790.047*
H1C0.43230.52980.12290.047*
C220.61287 (14)0.0505 (2)0.00345 (13)0.0258 (6)
H12G0.57250.0930.00560.031*
H12H0.63540.08120.04260.031*
C230.58883 (16)0.0575 (2)0.02278 (16)0.0338 (7)
H12I0.56350.08620.01510.041*
H12J0.55680.05520.06530.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01470 (11)0.01799 (11)0.01167 (10)0.00316 (4)0.00452 (6)0.00001 (4)
Cl10.0180 (3)0.0343 (3)0.0169 (3)0.0085 (2)0.0052 (2)0.0057 (2)
P10.0175 (3)0.0184 (3)0.0133 (3)0.0028 (2)0.0056 (2)0.0004 (2)
C310.0228 (12)0.0243 (12)0.0139 (11)0.0056 (10)0.0048 (9)0.0003 (10)
C340.0322 (15)0.0480 (17)0.0161 (13)0.0121 (13)0.0018 (11)0.0015 (12)
C360.0247 (16)0.0287 (16)0.0191 (16)0.0048 (10)0.0019 (13)0.0010 (9)
C110.0196 (15)0.0213 (14)0.0131 (14)0.0027 (9)0.0040 (11)0.0005 (8)
C150.0199 (15)0.0240 (15)0.0159 (15)0.0004 (9)0.0051 (12)0.0021 (8)
C260.0276 (14)0.0200 (13)0.0343 (15)0.0039 (11)0.0102 (11)0.0048 (11)
C160.0249 (12)0.0176 (11)0.0159 (11)0.0019 (10)0.0043 (10)0.0015 (9)
C130.0228 (12)0.0184 (12)0.0170 (11)0.0033 (10)0.0056 (9)0.0003 (9)
C350.0291 (18)0.0406 (19)0.0201 (17)0.0048 (11)0.0027 (14)0.0042 (10)
C250.0375 (16)0.0223 (14)0.0480 (18)0.0024 (12)0.0176 (14)0.0076 (12)
C240.0444 (17)0.0280 (14)0.0400 (17)0.0112 (13)0.0207 (14)0.0143 (13)
C320.0291 (14)0.0271 (13)0.0186 (12)0.0059 (11)0.0082 (11)0.0029 (10)
C120.0207 (12)0.0213 (12)0.0147 (11)0.0001 (10)0.0045 (9)0.0010 (9)
Cl20.0401 (4)0.0589 (4)0.0238 (4)0.0154 (4)0.0020 (3)0.0031 (3)
Cl30.0300 (3)0.0473 (4)0.0306 (4)0.0040 (3)0.0059 (3)0.0100 (3)
N10.0204 (10)0.0240 (11)0.0212 (11)0.0055 (8)0.0099 (8)0.0015 (8)
C140.0210 (12)0.0250 (12)0.0122 (11)0.0037 (10)0.0047 (9)0.0009 (9)
C210.0220 (12)0.0203 (12)0.0202 (12)0.0021 (10)0.0091 (10)0.0022 (9)
C20.0189 (12)0.0327 (14)0.0247 (13)0.0036 (10)0.0085 (10)0.0007 (11)
C30.0257 (14)0.0487 (18)0.0236 (14)0.0020 (12)0.0019 (11)0.0012 (12)
C330.0356 (15)0.0386 (16)0.0180 (13)0.0130 (12)0.0078 (11)0.0055 (11)
C10.0297 (14)0.0275 (14)0.0374 (16)0.0076 (11)0.0120 (12)0.0035 (12)
C220.0276 (13)0.0290 (14)0.0214 (13)0.0013 (11)0.0057 (11)0.0043 (11)
C230.0337 (16)0.0343 (16)0.0342 (16)0.0086 (13)0.0082 (13)0.0110 (13)
Geometric parameters (Å, º) top
Pt1—Cl1i2.3106 (5)C25—C241.519 (5)
Pt1—Cl12.3106 (6)C25—H12C0.99
Pt1—P12.3258 (6)C25—H12D0.99
Pt1—P1i2.3258 (6)C24—C231.520 (4)
P1—C111.816 (3)C24—H12E0.99
P1—C211.839 (2)C24—H12F0.99
P1—C311.853 (2)C32—C331.533 (4)
C31—C361.532 (4)C32—H13G0.99
C31—C321.537 (4)C32—H13H0.99
C31—H1311C12—H1120.95
C34—C351.517 (5)Cl2—C31.775 (3)
C34—C331.520 (4)Cl3—C31.769 (3)
C34—H13A0.99N1—C141.380 (3)
C34—H13B0.99N1—C11.443 (4)
C36—C351.527 (4)N1—C21.448 (3)
C36—H13C0.99C21—C221.533 (4)
C36—H13D0.99C21—H1211
C11—C121.397 (3)C2—H2A0.98
C11—C161.398 (4)C2—H2B0.98
C15—C161.384 (4)C2—H2C0.98
C15—C141.407 (3)C3—H3A0.99
C15—H1150.95C3—H3B0.99
C26—C251.530 (4)C33—H13I0.99
C26—C211.539 (3)C33—H13J0.99
C26—H12A0.99C1—H1A0.98
C26—H12B0.99C1—H1B0.98
C16—H1160.95C1—H1C0.98
C13—C121.384 (4)C22—C231.532 (4)
C13—C141.408 (4)C22—H12G0.99
C13—H1130.95C22—H12H0.99
C35—H13E0.99C23—H12I0.99
C35—H13F0.99C23—H12J0.99
Cl1i—Pt1—Cl1180.00 (4)C23—C24—H12E109.4
Cl1i—Pt1—P189.64 (2)C25—C24—H12F109.4
Cl1—Pt1—P190.36 (2)C23—C24—H12F109.4
Cl1i—Pt1—P1i90.36 (2)H12E—C24—H12F108
Cl1—Pt1—P1i89.64 (2)C33—C32—C31110.8 (2)
P1—Pt1—P1i180.00 (4)C33—C32—H13G109.5
C11—P1—C21106.27 (11)C31—C32—H13G109.5
C11—P1—C31104.40 (12)C33—C32—H13H109.5
C21—P1—C31104.88 (11)C31—C32—H13H109.5
C11—P1—Pt1116.36 (9)H13G—C32—H13H108.1
C21—P1—Pt1109.01 (8)C13—C12—C11121.8 (2)
C31—P1—Pt1115.00 (8)C13—C12—H112119.1
C36—C31—C32111.0 (2)C11—C12—H112119.1
C36—C31—P1110.51 (18)C14—N1—C1120.5 (2)
C32—C31—P1113.61 (18)C14—N1—C2119.7 (2)
C36—C31—H131107.1C1—N1—C2117.1 (2)
C32—C31—H131107.1N1—C14—C15121.0 (2)
P1—C31—H131107.1N1—C14—C13121.9 (2)
C35—C34—C33111.1 (2)C15—C14—C13117.1 (2)
C35—C34—H13A109.4C22—C21—C26110.4 (2)
C33—C34—H13A109.4C22—C21—P1112.19 (18)
C35—C34—H13B109.4C26—C21—P1110.20 (17)
C33—C34—H13B109.4C22—C21—H121108
H13A—C34—H13B108C26—C21—H121108
C35—C36—C31111.2 (2)P1—C21—H121108
C35—C36—H13C109.4N1—C2—H2A109.5
C31—C36—H13C109.4N1—C2—H2B109.5
C35—C36—H13D109.4H2A—C2—H2B109.5
C31—C36—H13D109.4N1—C2—H2C109.5
H13C—C36—H13D108H2A—C2—H2C109.5
C12—C11—C16117.2 (2)H2B—C2—H2C109.5
C12—C11—P1119.9 (2)Cl3—C3—Cl2111.17 (15)
C16—C11—P1122.85 (17)Cl3—C3—H3A109.4
C16—C15—C14121.1 (3)Cl2—C3—H3A109.4
C16—C15—H115119.4Cl3—C3—H3B109.4
C14—C15—H115119.4Cl2—C3—H3B109.4
C25—C26—C21110.1 (2)H3A—C3—H3B108
C25—C26—H12A109.6C34—C33—C32111.4 (2)
C21—C26—H12A109.6C34—C33—H13I109.3
C25—C26—H12B109.6C32—C33—H13I109.3
C21—C26—H12B109.6C34—C33—H13J109.3
H12A—C26—H12B108.1C32—C33—H13J109.3
C15—C16—C11121.7 (2)H13I—C33—H13J108
C15—C16—H116119.2N1—C1—H1A109.5
C11—C16—H116119.2N1—C1—H1B109.5
C12—C13—C14121.0 (2)H1A—C1—H1B109.5
C12—C13—H113119.5N1—C1—H1C109.5
C14—C13—H113119.5H1A—C1—H1C109.5
C34—C35—C36111.7 (3)H1B—C1—H1C109.5
C34—C35—H13E109.3C23—C22—C21110.1 (2)
C36—C35—H13E109.3C23—C22—H12G109.6
C34—C35—H13F109.3C21—C22—H12G109.6
C36—C35—H13F109.3C23—C22—H12H109.6
H13E—C35—H13F107.9C21—C22—H12H109.6
C24—C25—C26111.9 (2)H12G—C22—H12H108.2
C24—C25—H12C109.2C24—C23—C22110.9 (2)
C26—C25—H12C109.2C24—C23—H12I109.5
C24—C25—H12D109.2C22—C23—H12I109.5
C26—C25—H12D109.2C24—C23—H12J109.5
H12C—C25—H12D107.9C22—C23—H12J109.5
C25—C24—C23111.2 (2)H12I—C23—H12J108.1
C25—C24—H12E109.4
Cl1i—Pt1—P1—C1134.86 (10)C36—C31—C32—C3355.2 (3)
Cl1—Pt1—P1—C11145.14 (10)P1—C31—C32—C33179.56 (17)
Cl1i—Pt1—P1—C2185.23 (9)C14—C13—C12—C110.5 (4)
Cl1—Pt1—P1—C2194.77 (9)C16—C11—C12—C130.3 (4)
Cl1i—Pt1—P1—C31157.36 (9)P1—C11—C12—C13177.42 (19)
Cl1—Pt1—P1—C3122.64 (9)C1—N1—C14—C15173.3 (3)
C11—P1—C31—C3662.6 (2)C2—N1—C14—C1512.9 (4)
C21—P1—C31—C36174.20 (19)C1—N1—C14—C136.9 (4)
Pt1—P1—C31—C3666.1 (2)C2—N1—C14—C13167.3 (2)
C11—P1—C31—C3262.9 (2)C16—C15—C14—N1179.5 (2)
C21—P1—C31—C3248.7 (2)C16—C15—C14—C130.3 (4)
Pt1—P1—C31—C32168.41 (15)C12—C13—C14—N1179.7 (2)
C32—C31—C36—C3554.9 (3)C12—C13—C14—C150.5 (4)
P1—C31—C36—C35178.1 (2)C25—C26—C21—C2256.8 (3)
C21—P1—C11—C12157.2 (2)C25—C26—C21—P1178.7 (2)
C31—P1—C11—C1292.2 (2)C11—P1—C21—C2264.7 (2)
Pt1—P1—C11—C1235.7 (3)C31—P1—C21—C22174.93 (17)
C21—P1—C11—C1625.8 (3)Pt1—P1—C21—C2261.43 (18)
C31—P1—C11—C1684.7 (3)C11—P1—C21—C26171.79 (18)
Pt1—P1—C11—C16147.4 (2)C31—P1—C21—C2661.6 (2)
C14—C15—C16—C111.2 (4)Pt1—P1—C21—C2662.07 (18)
C12—C11—C16—C151.2 (4)C35—C34—C33—C3256.0 (3)
P1—C11—C16—C15178.2 (2)C31—C32—C33—C3455.9 (3)
C33—C34—C35—C3655.7 (3)C26—C21—C22—C2358.1 (3)
C31—C36—C35—C3455.3 (3)P1—C21—C22—C23178.51 (18)
C21—C26—C25—C2455.6 (3)C25—C24—C23—C2256.3 (3)
C26—C25—C24—C2355.5 (3)C21—C22—C23—C2457.8 (3)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C20H32NP)2]·2CH2Cl2
Mr1070.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.4146 (9), 13.1517 (6), 19.3459 (9)
β (°) 94.660 (2)
V3)4923.4 (4)
Z4
Radiation typeCu Kα
µ (mm1)9.16
Crystal size (mm)0.26 × 0.24 × 0.16
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.199, 0.322
No. of measured, independent and
observed [I > 2σ(I)] reflections
56178, 4239, 4069
Rint0.045
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.08
No. of reflections4239
No. of parameters244
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0406P)2 + 10.7442P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.72, 1.15

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. A. Muller is acknowledged for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohansson, M. H., Otto, S. & Oskarsson, Å. (2002). Acta Cryst. B58, 244–250.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLutz, M., Spek, A. L., Kreiter, R., Klein Gebbink, R. J. M. & Koten, G. (2005). Acta Cryst. E61, m2728–m2729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.  Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds