organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Eth­yl(phen­yl)phosphinic acid

aLaboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, 97105-900 Santa Maria–RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br

(Received 20 November 2012; accepted 22 November 2012; online 30 November 2012)

The crystal structure of the title compound, C8H11O2P, features O—H⋯O hydrogen bonds, which link mol­ecules related by the b-glide plane into chains along [010].

Related literature

For background to metal-organic frameworks involving phospho­nate ligands, see: Gagnon et al. (2012[Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Coord. Chem. Rev. 112, 1034-1054.]). For details of coordination polymers constructed using phosphinic acids as the spacer ligand, see: Siqueira et al. (2006[Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 537-540.]); Beckmann et al. (2009[Beckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412-1419.]). For further details of phosphinic acids and the crystal structures of similar compounds, see: Burrow et al. (2000[Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357-e358.]); Burrow & Siqueira da Silva (2011a[Burrow, R. A. & Siqueira da Silva, R. M. (2011a). Acta Cryst. E67, o1045.],b[Burrow, R. A. & Siqueira da Silva, R. M. (2011b). Acta Cryst. E67, o2005.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For geometry analysis using Mogul, see: Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11O2P

  • Mr = 170.14

  • Orthorhombic, P b c n

  • a = 13.5314 (16) Å

  • b = 8.0328 (9) Å

  • c = 15.922 (2) Å

  • V = 1730.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.41 × 0.12 × 0.11 mm

Data collection
  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.971

  • 14069 measured reflections

  • 2650 independent reflections

  • 1499 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.09

  • 2650 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (2) 1.64 (2) 2.4931 (19) 168 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Coordination polymers are the basis of metal-organic frameworks usually based on carboxylate ligands or phosphonate ligands (Gagnon et al., 2012). Coordination polymers have also been constructed using phosphinic acids as the spacer ligand (Siqueira et al., 2006; Beckmann et al., 2009). Continuing our research on phosphinic acids (Burrow et al., 2000; Burrow & Siqueira da Silva, 2011a,b), we report herein on the synthesis and crystal structure of the title compound.

The title compound, Fig. 1, is found to crystallize as a racemic mixture of enantiomers in the centrosymmetric space group Pbcn. An analysis of the geometry with Mogul [Bruno et al., 2004] using the Cambridge Structural Database [CSD; Allen, 2002] showed a slightly wider C—P—C angle [110.87 (9) °] than average [mean = 106.0(2.2)° of 15 observations] with |z-score| = 2.178. The P—O distance, though not unusual at 1.5529 (14) Å, is slightly longer than average value [mean 1.542 (22) Å of 17 observations] and is similar to that in methyl(phenyl)phosphinic acid [1.5526 (16) Å; Burrow & Siqueira da Silva, 2011b].

In the crystal, hydrogen bonding interactions (Table 1 and Fig. 2) of the type OH···O=P—OH···O=P join molecules related by the b glide plane into continuous chains along [010]. The short P—O···O=P distance of 2.4931 (19) Å indicates a strong hydrogen bond. This is slightly shorter than the average O···O interaction distance in the CSD [2.51 (5) Å of 60 observations] for other phosphinic acids, but is equal that for methyl(phenyl)phosphinic acid, 2.4838 (18) Å [Burrow & Siqueira da Silva, 2011b].

The crystal packing diagram, Fig. 2, shows that the hydrogen bonded chains of the title compound form columns in the crystallographic b direction, with the chains alternating direction in the other two dimensions. There are no phenyl-phenyl interactions.

Related literature top

For background to metal-organic frameworks involving phosphonate ligands, see: Gagnon et al. (2012). For details of coordination polymers constructed using phosphinic acids as the spacer ligand, see: Siqueira et al. (2006); Beckmann et al. (2009). For further details of phosphinic acids and the crystal structures of similar compounds, see: Burrow et al. (2000); Burrow & Siqueira da Silva (2011a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For geometry analysis using Mogul, see: Bruno et al. (2004).

Experimental top

To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane, diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 273 K under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 273 K and ethyliodide (1.25 ml, 19.6 mmol) was added. After further stirring at room temperature for 48 h, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 M, 20 ml) and filtered on a glass frit. The white solid was washed with acetone and dried giving a yield of 0.84 g (35%) of pure product. Crystals suitable for single-crystal X-ray analysis were grown from an acetone solution in a desiccator with silica gel. Spectroscopic and TGA data for the title compound are available in the archived CIF.

Refinement top

The H atom on O1 was located in a difference Fourier map and its position was allowed to refine freely with Uiso(H) = 1.5 Ueq(O). The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93, 0.97 and 0.97 Å for CH, CH2 and CH3 H atoms, respectively, with = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view along the a axis of the crystal packing of the title compound. The O-H···O hydrogen bonds are shown as dashed lines.
rac-Ethyl(phenyl)phosphinic acid top
Crystal data top
C8H11O2PDx = 1.306 Mg m3
Mr = 170.14Melting point = 336–341 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 13.5314 (16) ÅCell parameters from 2263 reflections
b = 8.0328 (9) Åθ = 2.6–26.5°
c = 15.922 (2) ŵ = 0.27 mm1
V = 1730.6 (4) Å3T = 296 K
Z = 8Block, colourless
F(000) = 7200.41 × 0.12 × 0.11 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2650 independent reflections
Radiation source: sealed ceramic X ray tube, Siemens KFF1499 reflections with I > 2σ(I)
Graphite crystal monochromatorRint = 0.054
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 3.2°
0.5 ° ω & ϕ scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 911
Tmin = 0.906, Tmax = 0.971l = 1822
14069 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.0622P]
where P = (Fo2 + 2Fc2)/3
2650 reflections(Δ/σ)max < 0.001
104 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H11O2PV = 1730.6 (4) Å3
Mr = 170.14Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.5314 (16) ŵ = 0.27 mm1
b = 8.0328 (9) ÅT = 296 K
c = 15.922 (2) Å0.41 × 0.12 × 0.11 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
2650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1499 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.971Rint = 0.054
14069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
2650 reflectionsΔρmin = 0.34 e Å3
104 parameters
Special details top

Experimental. Spectroscopic and TGA data for the title compound:

IR: 1438 (m), 1177 (versus), 1137 (s), 998 (versus), 935 (versus), 745 (m), 718 (s), 692 (versus), 565 (m), 537 (m), 495 (m) cm-1. TGA: 483 - 603 K; 88% loss.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31872 (4)0.19541 (6)0.40958 (3)0.03859 (18)
O10.34640 (11)0.35269 (17)0.35798 (8)0.0468 (4)
H10.3212 (16)0.444 (3)0.3780 (15)0.07*
O20.21554 (10)0.13429 (17)0.39751 (8)0.0496 (4)
C110.40682 (16)0.0441 (3)0.37446 (13)0.0539 (5)
H11A0.40040.05410.40950.065*
H11B0.38970.0120.31760.065*
C120.51433 (18)0.0978 (3)0.37521 (16)0.0740 (7)
H12C0.52220.19530.3410.111*
H12A0.55470.00960.35330.111*
H12B0.53410.12240.43180.111*
C210.33743 (13)0.2444 (2)0.51841 (11)0.0368 (4)
C220.41968 (14)0.3314 (2)0.54585 (13)0.0474 (5)
H220.46750.36450.50730.057*
C230.43146 (16)0.3697 (3)0.62986 (14)0.0584 (6)
H230.48680.42860.64760.07*
C240.36130 (17)0.3207 (3)0.68740 (14)0.0579 (6)
H240.36940.34640.74390.069*
C250.28001 (17)0.2344 (3)0.66167 (13)0.0576 (6)
H250.23290.20120.70080.069*
C260.26725 (15)0.1960 (2)0.57756 (12)0.0466 (5)
H260.21150.13740.56050.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0484 (3)0.0289 (3)0.0386 (3)0.0015 (2)0.0015 (2)0.0000 (2)
O10.0652 (9)0.0336 (8)0.0416 (8)0.0046 (7)0.0087 (6)0.0029 (6)
O20.0536 (8)0.0376 (8)0.0576 (9)0.0038 (7)0.0134 (7)0.0018 (6)
C110.0701 (13)0.0399 (12)0.0516 (12)0.0116 (11)0.0031 (10)0.0035 (9)
C120.0666 (15)0.0666 (17)0.0887 (19)0.0219 (13)0.0124 (13)0.0028 (14)
C210.0423 (10)0.0295 (9)0.0386 (9)0.0002 (8)0.0005 (7)0.0011 (8)
C220.0479 (11)0.0445 (12)0.0498 (12)0.0086 (9)0.0002 (9)0.0006 (9)
C230.0613 (14)0.0576 (14)0.0563 (13)0.0077 (11)0.0151 (11)0.0097 (11)
C240.0732 (16)0.0599 (15)0.0405 (11)0.0076 (12)0.0076 (11)0.0081 (10)
C250.0620 (14)0.0667 (15)0.0442 (12)0.0032 (11)0.0132 (10)0.0001 (11)
C260.0444 (11)0.0458 (12)0.0496 (12)0.0047 (9)0.0028 (8)0.0014 (9)
Geometric parameters (Å, º) top
P1—O21.4925 (14)C21—C221.385 (2)
P1—O11.5529 (14)C21—C261.393 (3)
P1—C111.792 (2)C22—C231.382 (3)
P1—C211.7950 (19)C22—H220.93
O1—H10.87 (2)C23—C241.377 (3)
C11—C121.517 (3)C23—H230.93
C11—H11A0.97C24—C251.363 (3)
C11—H11B0.97C24—H240.93
C12—H12C0.96C25—C261.385 (3)
C12—H12A0.96C25—H250.93
C12—H12B0.96C26—H260.93
O2—P1—O1115.16 (8)C22—C21—C26118.40 (18)
O2—P1—C11111.05 (10)C22—C21—P1121.91 (14)
O1—P1—C11103.08 (9)C26—C21—P1119.69 (14)
O2—P1—C21109.17 (8)C23—C22—C21120.68 (19)
O1—P1—C21107.36 (8)C23—C22—H22119.7
C11—P1—C21110.87 (9)C21—C22—H22119.7
P1—O1—H1113.5 (16)C24—C23—C22120.06 (19)
C12—C11—P1116.28 (16)C24—C23—H23120.0
C12—C11—H11A108.2C22—C23—H23120.0
P1—C11—H11A108.2C25—C24—C23120.1 (2)
C12—C11—H11B108.2C25—C24—H24119.9
P1—C11—H11B108.2C23—C24—H24119.9
H11A—C11—H11B107.4C24—C25—C26120.3 (2)
C11—C12—H12C109.5C24—C25—H25119.8
C11—C12—H12A109.5C26—C25—H25119.8
H12C—C12—H12A109.5C25—C26—C21120.43 (19)
C11—C12—H12B109.5C25—C26—H26119.8
H12C—C12—H12B109.5C21—C26—H26119.8
H12A—C12—H12B109.5
O2—P1—C11—C12174.11 (16)C26—C21—C22—C230.3 (3)
O1—P1—C11—C1250.26 (18)P1—C21—C22—C23179.01 (16)
C21—P1—C11—C1264.34 (19)C21—C22—C23—C240.3 (3)
O2—P1—C21—C22168.19 (15)C22—C23—C24—C250.1 (3)
O1—P1—C21—C2242.73 (17)C23—C24—C25—C260.2 (3)
C11—P1—C21—C2269.16 (18)C24—C25—C26—C210.2 (3)
O2—P1—C21—C2611.07 (18)C22—C21—C26—C250.0 (3)
O1—P1—C21—C26136.53 (16)P1—C21—C26—C25179.28 (15)
C11—P1—C21—C26111.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)1.64 (2)2.4931 (19)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H11O2P
Mr170.14
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)13.5314 (16), 8.0328 (9), 15.922 (2)
V3)1730.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.41 × 0.12 × 0.11
Data collection
DiffractometerBruker X8 Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.906, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14069, 2650, 1499
Rint0.054
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.09
No. of reflections2650
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (2)1.64 (2)2.4931 (19)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grant 479747/2009–1) and the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul; grant 10/1645–9) is gratefully acknowledged, as are fellowships from CNPq (RAB; grant 308731/2009–3) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals
First citationBeckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412–1419.  Web of Science CSD CrossRef CAS
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS
First citationBurrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357–e358.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBurrow, R. A. & Siqueira da Silva, R. M. (2011a). Acta Cryst. E67, o1045.  Web of Science CSD CrossRef IUCr Journals
First citationBurrow, R. A. & Siqueira da Silva, R. M. (2011b). Acta Cryst. E67, o2005.  Web of Science CSD CrossRef IUCr Journals
First citationGagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Coord. Chem. Rev. 112, 1034–1054.  CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 537–540.  Web of Science CSD CrossRef CAS
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds