supplementary materials


su2533 scheme

Acta Cryst. (2012). E68, m1567    [ doi:10.1107/S1600536812048143 ]

Bis{2-[(phenylimino)methyl]-1H-pyrrol-1-ido}palladium(II)

W. Imhof

Abstract top

In the title complex, [Pd(C11H9N2)2], the PdII atom is located on an inversion centre and has a square-planar coordination geometry. The phenyl substituents at the imine N atoms make a dihedral angle of 75.0 (6)° with respect to the PdN4 plane.

Comment top

In the course of a project related to the supramolecular structures of square planar nickel and palladium complexes of pyrrole-2-carbaldehyde based Schiff base ligands in comparison with the structures of the free ligands the molecular structure of the title compound was determined. The free ligands form inversion dimers via N—H···N hydrogen bonds between the pyrrole NH function and the imine nitrogen atom of a neighbouring molecule (Crestani et al., 2011; Gomes et al. 2010).

The molecular structure of the title compound is presented in Fig. 1. The central palladium atom is located on a crystallographic inversion center. The phenyl substituents at the imine nitrogen atoms show a dihedral angle of 75.0 (6)° with respect to the PdN4 plane. As is expected the bond lengths in the NCCN backbone of the ligand change upon coordination to palladium. The C4–N1 bond in the pyrrole subunit is slightly elongated to 1.389 (3) Å. In addition, C4–C5 bond is shortened to 1.400 (4) Å whereas the imine double bond C5–N2 is elongated to 1.310 (4) Å.

Related literature top

For structure analyses of the free ligand N-[(1H-pyrrol-2-yl)methylene]aniline, see: Gomes et al. (2010); Crestani et al. (2011). For the structure of a related nickel complex of the same imine ligand and an additional bipyridine ligand, see: Castro et al. (1992). For the structure of a related palladium complex with a different aromatic substituent, see: Liang et al. (2004).

Experimental top

N-((1H-Pyrrol-2-yl)methylene)aniline (170 mg, 1 mmol) and [Pd(PPh3)4] (580 mg, 0.5 mmol) were dissolved in 20 ml anhydrous toluene under an argon atmosphere. After the solution is stirred at room temperature for 2 h it was filtered through a short bed of celite. Afterwards the solution was concentrated to ca. 10 ml in vacuo. Yellow plate-like crystals of the title compound were obtained from this solution after 1 week at 253 K (Yield: 169 mg, 76%).

Refinement top

Hydrogen atoms were included into calculated positions and treated as riding: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level (symmetry code: (i) = -x+1, -y+1, -z).
Bis{2-[(phenylimino)methyl]-1H-pyrrol-1-ido}palladium(II) top
Crystal data top
[Pd(C11H9N2)2]F(000) = 448
Mr = 444.80Dx = 1.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3903 reflections
a = 10.5634 (4) Åθ = 2.7–27.5°
b = 10.6480 (6) ŵ = 1.04 mm1
c = 8.0560 (7) ÅT = 183 K
β = 93.044 (2)°Plate, yellow
V = 904.85 (10) Å30.6 × 0.1 × 0.02 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
phi–scan, ω–scanh = 1313
3903 measured reflectionsk = 1313
2018 independent reflectionsl = 010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0376P)2 + ]
where P = (Fo2 + 2Fc2)/3
2018 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Pd(C11H9N2)2]V = 904.85 (10) Å3
Mr = 444.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.5634 (4) ŵ = 1.04 mm1
b = 10.6480 (6) ÅT = 183 K
c = 8.0560 (7) Å0.6 × 0.1 × 0.02 mm
β = 93.044 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1464 reflections with I > 2σ(I)
3903 measured reflectionsRint = 0.035
2018 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.75 e Å3
2018 reflectionsAbsolute structure: ?
124 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.00000.02321 (12)
N10.6789 (2)0.5646 (2)0.0414 (3)0.0262 (6)
C10.7967 (3)0.5447 (3)0.0074 (4)0.0312 (7)
H10.81880.48630.09020.037*
C20.8824 (3)0.6229 (3)0.0821 (4)0.0315 (7)
H20.97140.62680.07070.038*
C30.8136 (3)0.6933 (3)0.1901 (4)0.0321 (7)
H30.84570.75520.26620.038*
C40.6880 (3)0.6555 (3)0.1652 (3)0.0285 (7)
C50.5768 (3)0.6762 (3)0.2483 (3)0.0299 (7)
H50.57440.73650.33490.036*
N20.4762 (2)0.6101 (2)0.2034 (3)0.0270 (6)
C60.3624 (3)0.6222 (3)0.2888 (3)0.0280 (7)
C70.3223 (3)0.5215 (3)0.3841 (4)0.0339 (8)
H70.37350.44860.39750.041*
C80.2079 (4)0.5286 (3)0.4586 (4)0.0385 (8)
H80.18110.46060.52450.046*
C90.1314 (3)0.6348 (3)0.4379 (4)0.0395 (8)
H90.05110.63820.48580.047*
C100.1739 (3)0.7353 (3)0.3466 (4)0.0363 (8)
H100.12320.80880.33500.044*
C110.2885 (3)0.7303 (3)0.2724 (3)0.0300 (7)
H110.31680.80000.21070.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02423 (19)0.02118 (18)0.02387 (18)0.00028 (14)0.00192 (12)0.00276 (13)
N10.0275 (14)0.0234 (14)0.0274 (12)0.0012 (11)0.0018 (11)0.0008 (10)
C10.0302 (18)0.0304 (15)0.0328 (16)0.0010 (14)0.0002 (14)0.0008 (13)
C20.0240 (16)0.0340 (17)0.0361 (16)0.0078 (14)0.0021 (14)0.0057 (13)
C30.0318 (18)0.0316 (18)0.0319 (16)0.0076 (14)0.0064 (14)0.0004 (13)
C40.0356 (18)0.0226 (15)0.0268 (14)0.0029 (13)0.0027 (14)0.0022 (12)
C50.0338 (18)0.0272 (16)0.0283 (15)0.0008 (13)0.0029 (14)0.0042 (12)
N20.0290 (14)0.0246 (13)0.0271 (13)0.0011 (11)0.0009 (11)0.0037 (10)
C60.0286 (16)0.0311 (17)0.0238 (14)0.0030 (13)0.0024 (13)0.0076 (12)
C70.0372 (19)0.035 (2)0.0297 (16)0.0033 (14)0.0008 (14)0.0003 (12)
C80.045 (2)0.039 (2)0.0308 (17)0.0062 (15)0.0028 (16)0.0030 (13)
C90.0298 (18)0.055 (2)0.0340 (16)0.0047 (16)0.0056 (14)0.0123 (15)
C100.0348 (19)0.039 (2)0.0351 (17)0.0095 (15)0.0014 (15)0.0080 (14)
C110.0339 (18)0.0276 (17)0.0281 (15)0.0026 (14)0.0020 (14)0.0035 (12)
Geometric parameters (Å, º) top
Pd1—N12.022 (2)C5—H50.9500
Pd1—N1i2.022 (2)N2—C61.422 (4)
Pd1—N22.041 (2)C6—C111.393 (4)
Pd1—N2i2.041 (2)C6—C71.398 (4)
N1—C11.342 (4)C7—C81.379 (5)
N1—C41.389 (3)C7—H70.9500
C1—C21.401 (4)C8—C91.395 (5)
C1—H10.9500C8—H80.9500
C2—C31.384 (4)C9—C101.387 (5)
C2—H20.9500C9—H90.9500
C3—C41.391 (4)C10—C111.379 (4)
C3—H30.9500C10—H100.9500
C4—C51.400 (4)C11—H110.9500
C5—N21.310 (4)
N1—Pd1—N1i180.0C4—C5—H5120.9
N1—Pd1—N280.00 (9)C5—N2—C6120.8 (2)
N1i—Pd1—N2100.00 (9)C5—N2—Pd1113.4 (2)
N1—Pd1—N2i100.00 (9)C6—N2—Pd1125.75 (18)
N1i—Pd1—N2i80.00 (9)C11—C6—C7120.1 (3)
N2—Pd1—N2i180.0C11—C6—N2120.9 (3)
C1—N1—C4106.9 (3)C7—C6—N2119.0 (3)
C1—N1—Pd1140.5 (2)C8—C7—C6119.7 (3)
C4—N1—Pd1112.6 (2)C8—C7—H7120.1
N1—C1—C2109.8 (3)C6—C7—H7120.1
N1—C1—H1125.1C9—C8—C7120.5 (3)
C2—C1—H1125.1C9—C8—H8119.7
C3—C2—C1107.4 (3)C7—C8—H8119.7
C3—C2—H2126.3C10—C9—C8119.1 (3)
C1—C2—H2126.3C10—C9—H9120.4
C2—C3—C4106.3 (3)C8—C9—H9120.4
C2—C3—H3126.8C9—C10—C11121.1 (3)
C4—C3—H3126.8C9—C10—H10119.4
N1—C4—C3109.5 (3)C11—C10—H10119.4
N1—C4—C5115.2 (3)C6—C11—C10119.4 (3)
C3—C4—C5134.7 (3)C6—C11—H11120.3
N2—C5—C4118.2 (3)C10—C11—H11120.3
N2—C5—H5120.9
Symmetry code: (i) x+1, y+1, z.
Acknowledgements top

none

references
References top

Castro, J. A., Vilasanchez, J. E., Romero, J., Garcia-Vazquez, J. A., Duran, M. L., Sousa, A., Castellano, E. E. & Zukermann-Schpector, J. (1992). Z. Anorg. Allg. Chem. 612, 83–88.

Crestani, M. G., Manbeck, G. F., Brennessel, W. W., McCormick, T. M. & Eisenberg, R. (2011). Inorg. Chem. 50, 7172–7188.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gomes, C. S. B., Suresh, D., Gomes, P. T., Veiros, L. F., Duarte, M. T., Nunes, T. G. & Oliveira, M. C. (2010). Dalton Trans. 39, 736–748.

Liang, H., Liu, J., Li, X. & Li, Y. (2004). Polyhedron, 23, 1619–1627.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326, New York, Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.