organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­bromo-2,2,6,6,7,7-hexa­methyl­octane-4-one

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 6 November 2012; accepted 7 November 2012; online 17 November 2012)

In the title mol­ecule, C14H26Br2O, the central carbonyl group (C3O) is essentially planar (r.m.s. deviation = 0.0021 Å). The Br atoms lie on the same side of the mol­ecule and are approximately syn, with a Br—C⋯C—Br torsion angle of −43.52 (13)°. The crystal structure is devoid of any specific inter­molecular inter­actions.

Related literature

For background literature and the synthesis and crystal structures of related compounds, see: Parvez et al. (2002[Parvez, M., Kabir, S. M. H., Sorensen, T. S., Sun, F. & Watson, B. (2002). Can. J. Chem. 80, 413-417.])

[Scheme 1]

Experimental

Crystal data
  • C14H26Br2O

  • Mr = 370.17

  • Monoclinic, P 21 /c

  • a = 14.602 (5) Å

  • b = 9.963 (2) Å

  • c = 10.974 (4) Å

  • β = 93.321 (13)°

  • V = 1593.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.07 mm−1

  • T = 123 K

  • 0.16 × 0.14 × 0.04 mm

Data collection
  • Nonius APEXII CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.498, Tmax = 0.823

  • 6698 measured reflections

  • 3630 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.06

  • 3630 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our investigations on the characterization of ketones, we now report the crystal structure of the title compound (Fig. 1). The molecular dimensions in the title molecule agree very well with the corresponding molecular dimensions reported in closely related compounds (Parvez et al., 2002). The crystal structure (Fig. 2) is devoid of any intermolecular interactions.

Related literature top

For background literature and the synthesis and crystal structures of related compounds, see: Parvez et al. (2002)

Experimental top

The synthesis of the title compound and related compounds has been reported earlier (Parvez et al., 2002). Crystals suitable for crystallographic studies were grown from pentane/CH2Cl2 (1:1).

Refinement top

Though the H-atoms were observable in the difference electron density maps they were included at geometrically idealized positions with C—H distances = 1.00 and 0.98 Å for methine and methyl type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2 and 1.5 times Ueq(methine and methyl C-atoms, respectively).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (Farrugia, 1997) of the title molecule with the displacement ellipsoids plotted at 50% probability level; H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the unit cell packing of the crystal structure of the title compound. H atoms were omitted for clarity.
3,5-Dibromo-2,2,6,6,7,7-hexamethyloctane-4-one top
Crystal data top
C14H26Br2OF(000) = 752
Mr = 370.17Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6698 reflections
a = 14.602 (5) Åθ = 3.1–27.5°
b = 9.963 (2) ŵ = 5.07 mm1
c = 10.974 (4) ÅT = 123 K
β = 93.321 (13)°Plate, colourless
V = 1593.8 (9) Å30.16 × 0.14 × 0.04 mm
Z = 4
Data collection top
Nonius APEXII CCD
diffractometer
3630 independent reflections
Radiation source: fine-focus sealed tube3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1818
Tmin = 0.498, Tmax = 0.823k = 1212
6698 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.279P]
where P = (Fo2 + 2Fc2)/3
3630 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C14H26Br2OV = 1593.8 (9) Å3
Mr = 370.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.602 (5) ŵ = 5.07 mm1
b = 9.963 (2) ÅT = 123 K
c = 10.974 (4) Å0.16 × 0.14 × 0.04 mm
β = 93.321 (13)°
Data collection top
Nonius APEXII CCD
diffractometer
3630 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3044 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.823Rint = 0.022
6698 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
3630 reflectionsΔρmin = 0.62 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.119984 (18)0.34952 (2)0.04616 (2)0.02780 (9)
Br20.198646 (17)0.02636 (2)0.21493 (2)0.02471 (9)
O10.32951 (12)0.29847 (16)0.09933 (14)0.0265 (4)
C10.07327 (18)0.6488 (2)0.1864 (2)0.0244 (5)
H1A0.01590.68510.21480.037*
H1B0.05950.58520.11970.037*
H1C0.11080.72230.15720.037*
C20.12605 (16)0.5761 (2)0.29239 (18)0.0177 (4)
C30.21494 (16)0.5004 (2)0.25226 (19)0.0170 (4)
C40.19353 (16)0.3561 (2)0.20209 (18)0.0171 (5)
H40.15840.30790.26420.021*
C50.27965 (16)0.2724 (2)0.18064 (18)0.0175 (4)
C60.29800 (15)0.1531 (2)0.26737 (19)0.0168 (4)
H60.28630.18400.35180.020*
C70.39337 (16)0.0872 (2)0.27212 (19)0.0201 (5)
C80.42040 (19)0.0297 (2)0.1499 (2)0.0276 (6)
H8A0.48250.00780.15930.041*
H8B0.41890.10120.08850.041*
H8C0.37710.04120.12360.041*
C90.15287 (19)0.6853 (2)0.3883 (2)0.0266 (5)
H9A0.17320.64230.46560.040*
H9B0.09960.74240.40100.040*
H9C0.20280.74020.35910.040*
C100.05875 (18)0.4806 (2)0.3510 (2)0.0249 (5)
H10A0.09160.42790.41500.037*
H10B0.03140.42000.28870.037*
H10C0.01020.53290.38690.037*
C110.26542 (17)0.5849 (2)0.1600 (2)0.0242 (5)
H11A0.32570.54510.14830.036*
H11B0.27340.67660.19100.036*
H11C0.22940.58680.08180.036*
C120.28176 (18)0.4758 (2)0.3644 (2)0.0227 (5)
H12A0.33370.42170.34010.034*
H12B0.24970.42810.42740.034*
H12C0.30430.56210.39690.034*
C130.46246 (18)0.1962 (2)0.3165 (2)0.0278 (5)
H13A0.52390.15690.32690.042*
H13B0.44460.23240.39470.042*
H13C0.46270.26860.25610.042*
C140.39600 (19)0.0260 (2)0.3682 (2)0.0267 (5)
H14A0.45840.06210.37850.040*
H14B0.35370.09770.34090.040*
H14C0.37760.00990.44630.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03166 (17)0.02673 (14)0.02357 (13)0.00707 (10)0.01094 (10)0.00763 (9)
Br20.02415 (15)0.01923 (13)0.03042 (14)0.00386 (9)0.00116 (10)0.00072 (8)
O10.0318 (11)0.0245 (8)0.0242 (8)0.0076 (7)0.0108 (7)0.0059 (6)
C10.0284 (15)0.0209 (11)0.0237 (11)0.0097 (9)0.0002 (10)0.0027 (8)
C20.0207 (13)0.0153 (10)0.0173 (10)0.0038 (9)0.0027 (9)0.0006 (8)
C30.0171 (12)0.0170 (10)0.0166 (10)0.0004 (9)0.0012 (9)0.0004 (8)
C40.0176 (12)0.0196 (11)0.0139 (10)0.0016 (8)0.0008 (9)0.0009 (8)
C50.0212 (12)0.0155 (10)0.0156 (10)0.0008 (9)0.0011 (9)0.0022 (8)
C60.0165 (12)0.0183 (11)0.0157 (10)0.0015 (8)0.0016 (8)0.0003 (7)
C70.0213 (13)0.0191 (11)0.0197 (10)0.0036 (9)0.0010 (9)0.0004 (8)
C80.0312 (15)0.0285 (13)0.0234 (12)0.0100 (11)0.0048 (10)0.0019 (9)
C90.0354 (16)0.0222 (12)0.0221 (11)0.0069 (10)0.0016 (10)0.0052 (9)
C100.0238 (14)0.0220 (11)0.0300 (12)0.0027 (10)0.0097 (10)0.0047 (9)
C110.0244 (14)0.0227 (12)0.0260 (12)0.0034 (10)0.0053 (10)0.0014 (9)
C120.0227 (13)0.0232 (12)0.0216 (11)0.0023 (9)0.0035 (9)0.0042 (8)
C130.0182 (13)0.0286 (13)0.0362 (13)0.0009 (10)0.0017 (11)0.0003 (10)
C140.0327 (16)0.0246 (12)0.0229 (12)0.0075 (10)0.0020 (10)0.0042 (9)
Geometric parameters (Å, º) top
Br1—C41.968 (2)C8—H8A0.9800
Br2—C61.984 (2)C8—H8B0.9800
O1—C51.212 (3)C8—H8C0.9800
C1—C21.539 (3)C9—H9A0.9800
C1—H1A0.9800C9—H9B0.9800
C1—H1B0.9800C9—H9C0.9800
C1—H1C0.9800C10—H10A0.9800
C2—C101.536 (3)C10—H10B0.9800
C2—C91.548 (3)C10—H10C0.9800
C2—C31.585 (3)C11—H11A0.9800
C3—C111.537 (3)C11—H11B0.9800
C3—C121.545 (3)C11—H11C0.9800
C3—C41.565 (3)C12—H12A0.9800
C4—C51.538 (3)C12—H12B0.9800
C4—H41.0000C12—H12C0.9800
C5—C61.536 (3)C13—H13A0.9800
C6—C71.538 (3)C13—H13B0.9800
C6—H61.0000C13—H13C0.9800
C7—C81.531 (3)C14—H14A0.9800
C7—C131.542 (3)C14—H14B0.9800
C7—C141.543 (3)C14—H14C0.9800
C2—C1—H1A109.5H8A—C8—H8B109.5
C2—C1—H1B109.5C7—C8—H8C109.5
H1A—C1—H1B109.5H8A—C8—H8C109.5
C2—C1—H1C109.5H8B—C8—H8C109.5
H1A—C1—H1C109.5C2—C9—H9A109.5
H1B—C1—H1C109.5C2—C9—H9B109.5
C10—C2—C1107.7 (2)H9A—C9—H9B109.5
C10—C2—C9107.05 (18)C2—C9—H9C109.5
C1—C2—C9106.23 (18)H9A—C9—H9C109.5
C10—C2—C3112.07 (17)H9B—C9—H9C109.5
C1—C2—C3113.33 (17)C2—C10—H10A109.5
C9—C2—C3110.13 (19)C2—C10—H10B109.5
C11—C3—C12107.85 (19)H10A—C10—H10B109.5
C11—C3—C4111.40 (17)C2—C10—H10C109.5
C12—C3—C4103.79 (17)H10A—C10—H10C109.5
C11—C3—C2110.76 (18)H10B—C10—H10C109.5
C12—C3—C2110.09 (17)C3—C11—H11A109.5
C4—C3—C2112.63 (18)C3—C11—H11B109.5
C5—C4—C3113.79 (18)H11A—C11—H11B109.5
C5—C4—Br1105.00 (13)C3—C11—H11C109.5
C3—C4—Br1115.10 (14)H11A—C11—H11C109.5
C5—C4—H4107.5H11B—C11—H11C109.5
C3—C4—H4107.5C3—C12—H12A109.5
Br1—C4—H4107.5C3—C12—H12B109.5
O1—C5—C6122.1 (2)H12A—C12—H12B109.5
O1—C5—C4121.87 (19)C3—C12—H12C109.5
C6—C5—C4116.05 (17)H12A—C12—H12C109.5
C5—C6—C7118.46 (18)H12B—C12—H12C109.5
C5—C6—Br2102.39 (14)C7—C13—H13A109.5
C7—C6—Br2112.55 (14)C7—C13—H13B109.5
C5—C6—H6107.6H13A—C13—H13B109.5
C7—C6—H6107.6C7—C13—H13C109.5
Br2—C6—H6107.6H13A—C13—H13C109.5
C8—C7—C6114.14 (19)H13B—C13—H13C109.5
C8—C7—C13110.1 (2)C7—C14—H14A109.5
C6—C7—C13106.53 (18)C7—C14—H14B109.5
C8—C7—C14109.12 (18)H14A—C14—H14B109.5
C6—C7—C14108.79 (19)C7—C14—H14C109.5
C13—C7—C14108.0 (2)H14A—C14—H14C109.5
C7—C8—H8A109.5H14B—C14—H14C109.5
C7—C8—H8B109.5
C10—C2—C3—C11162.2 (2)C3—C4—C5—O169.9 (3)
C1—C2—C3—C1140.0 (3)Br1—C4—C5—O156.8 (2)
C9—C2—C3—C1178.8 (2)C3—C4—C5—C6110.8 (2)
C10—C2—C3—C1278.7 (2)Br1—C4—C5—C6122.49 (16)
C1—C2—C3—C12159.22 (19)O1—C5—C6—C715.5 (3)
C9—C2—C3—C1240.4 (2)C4—C5—C6—C7165.23 (18)
C10—C2—C3—C436.7 (2)O1—C5—C6—Br2109.0 (2)
C1—C2—C3—C485.5 (2)C4—C5—C6—Br270.32 (19)
C9—C2—C3—C4155.70 (17)C5—C6—C7—C859.8 (3)
C11—C3—C4—C563.6 (2)Br2—C6—C7—C859.5 (2)
C12—C3—C4—C552.2 (2)C5—C6—C7—C1361.9 (2)
C2—C3—C4—C5171.27 (17)Br2—C6—C7—C13178.84 (14)
C11—C3—C4—Br157.7 (2)C5—C6—C7—C14178.07 (18)
C12—C3—C4—Br1173.47 (14)Br2—C6—C7—C1462.6 (2)
C2—C3—C4—Br167.5 (2)

Experimental details

Crystal data
Chemical formulaC14H26Br2O
Mr370.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.602 (5), 9.963 (2), 10.974 (4)
β (°) 93.321 (13)
V3)1593.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)5.07
Crystal size (mm)0.16 × 0.14 × 0.04
Data collection
DiffractometerNonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.498, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
6698, 3630, 3044
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.06
No. of reflections3630
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.62

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParvez, M., Kabir, S. M. H., Sorensen, T. S., Sun, F. & Watson, B. (2002). Can. J. Chem. 80, 413–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds