organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­chloro-2,3-bis­­(chloro­meth­yl)butane

aEaStCHEM School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: raa@st-andrews.ac.uk

(Received 21 November 2012; accepted 25 November 2012; online 30 November 2012)

The title compound, C6H10Cl4, adopts a geometric arrangement with two C—Cl bonds anti­periplanar to C—H bonds and the other two anti­periplanar to C—C bonds. While minimising steric replusion, this arrangement still gives rise to some intramolecular C—H⋯Cl contacts. In the crystal, mol­ecules are connected into a three-dimensional architecture via further C—H⋯Cl contacts.

Related literature

The title compound was previously prepared by Weinges & Spänig (1968[Weinges, K. & Spänig, R. (1968). Chem. Ber. 101, 3010-3017.]). For related structures of polychlorinated acylic alkanes, see: Frenzen et al. (1999[Frenzen, G., Sippel, H. & Coelhan, M. (1999). Acta Cryst. C55, IUC9800079.]); Frenzen & Coelhan (1998[Frenzen, G. & Coelhan, M. (1998). Private communication (refcode HITZOZ). CCDC, Cambridge, England.]); Bart et al. (1979[Bart, J. C. J., Bassi, I. W. & Calcaterra, M. (1979). Acta Cryst. B35, 2646-2650.], 1980[Bart, J. C. J., Bassi, I. W. & Calcaterra, M. (1980). Acta Cryst. B36, 421-424.]); Karapetyan et al. (2008[Karapetyan, A. A., Tamazyan, R. A., Mikaelyan, A. R., Grigoryan, A. M., Vardanyan, A. S. & Nikogosyan, L. Zh. (2008). J. Struct. Chem. 49, 965-968.]); Kabalka et al. (2005[Kabalka, G. W., Wu, Z., Ju, Y. & Yao, M.-L. (2005). J. Org. Chem. 70, 10285-10291.]); Podsiadło & Katrusiak (2006[Podsiadło, M. & Katrusiak, A. (2006). Acta Cryst. B62, 1071-1077.]); Klaeboe et al. (1986[Klaeboe, P., Klewe, B., Martinsen, K., Nielsen, C. J., Powell, D. L. & Stubbles, D. J. (1986). J. Mol. Struct. 140, 1-18.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10Cl4

  • Mr = 223.94

  • Orthorhombic, P b c a

  • a = 8.998 (3) Å

  • b = 8.400 (3) Å

  • c = 24.643 (7) Å

  • V = 1862.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 93 K

  • 0.25 × 0.25 × 0.10 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.746, Tmax = 1.000

  • 8405 measured reflections

  • 1658 independent reflections

  • 1553 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.12

  • 1658 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl3 0.99 2.76 3.2097 (19) 108
C4—H4B⋯Cl4 0.99 2.80 3.2445 (19) 108
C5—H5B⋯Cl1 0.99 2.74 3.2069 (19) 109
C6—H6B⋯Cl2 0.99 2.72 3.1940 (18) 110
C2—H2⋯Cl3i 1.00 2.93 3.8599 (19) 155
C3—H3⋯Cl2ii 1.00 2.86 3.8092 (19) 160
C4—H4B⋯Cl3i 0.99 2.92 3.657 (2) 132
C5—H5A⋯Cl2iii 0.99 2.90 3.6951 (19) 138
C6—H6A⋯Cl1iv 0.99 2.84 3.655 (2) 140
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) -x, -y, -z.

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound shows a mixture of geometric arrangements of the C—Cl bonds, with two of them antiperiplanar to C—C bonds [Cl3—C5—C2—C3: 166.68 (11)°, Cl2—C4—C3—C2: 166.96 (11)°], and the other two antiperiplanar to C—H bonds [Cl1—C1—C2—H2: 178.6°, Cl4—C6—C3—H3: 175.9°]. This pattern of differing geometric arrangements has also been seen in related polychlorinated acylic alkanes (Frenzen et al., 1999; Frenzen & Coelhan, 1998; Bart et al., 1979, 1980; Karapetyan et al., 2008; Kabalka et al., 2005; Podsiadło & Katrusiak, 2006; Klaeboe et al., 1986), due to the necessity of minimizing steric repulsion in such extended structures. The arrangement of the C—Cl bonds gives rise to intramolecular C—H···Cl contacts for all four chlorines, at distances ranging from 2.72 to 2.80 Å. In addition, three of the four chlorine atoms also make intermolecular C—H···Cl contacts to adjacent molecules, at distances between 2.84 and 2.93 Å, resulting in the formation of a weakly interacting three-dimensional array.

Related literature top

The title compound was previously prepared by Weinges & Spänig (1968). For related structures of polychlorinated acylic alkanes, see: Frenzen et al. (1999); Frenzen & Coelhan (1998); Bart et al. (1979, 1980); Karapetyan et al. (2008); Kabalka et al. (2005); Podsiadło & Katrusiak (2006); Klaeboe et al. (1986).

Experimental top

The title compound was prepared by the method of Weinges and Spänig (1968). Crystals suitable for X-ray structure determination were obtained by sublimation at room temperature and ambient pressure.

Refinement top

Carbon-bound H atoms were included in calculated positions (C—H distances are 1.00 Å for methine H atoms and 0.99 Å for methylene H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
1,4-Dichloro-2,3-bis(chloromethyl)butane top
Crystal data top
C6H10Cl4F(000) = 912
Mr = 223.94Dx = 1.597 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5355 reflections
a = 8.998 (3) Åθ = 1.7–28.6°
b = 8.400 (3) ŵ = 1.20 mm1
c = 24.643 (7) ÅT = 93 K
V = 1862.6 (10) Å3Prism, colourless
Z = 80.25 × 0.25 × 0.10 mm
Data collection top
Rigaku Mercury
diffractometer
1658 independent reflections
Radiation source: rotating anode1553 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.050
Detector resolution: 14.7059 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 910
Tmin = 0.746, Tmax = 1.000l = 2529
8405 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.758P]
where P = (Fo2 + 2Fc2)/3
1658 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H10Cl4V = 1862.6 (10) Å3
Mr = 223.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.998 (3) ŵ = 1.20 mm1
b = 8.400 (3) ÅT = 93 K
c = 24.643 (7) Å0.25 × 0.25 × 0.10 mm
Data collection top
Rigaku Mercury
diffractometer
1658 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
1553 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 1.000Rint = 0.050
8405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.12Δρmax = 0.29 e Å3
1658 reflectionsΔρmin = 0.26 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07005 (5)0.12175 (5)0.063173 (16)0.02498 (15)
Cl20.32971 (5)0.25183 (6)0.190640 (17)0.02602 (15)
Cl30.33730 (5)0.06538 (6)0.184618 (18)0.02712 (15)
Cl40.08315 (5)0.40738 (5)0.056565 (18)0.02950 (15)
C10.1427 (2)0.0759 (2)0.07550 (7)0.0210 (4)
H1A0.11400.14680.04520.025*
H1B0.25260.07140.07680.025*
C20.08431 (17)0.14452 (19)0.12866 (6)0.0177 (4)
H20.12650.25410.13240.021*
C30.08737 (17)0.16035 (19)0.13078 (6)0.0174 (4)
H30.12840.05200.13830.021*
C40.13327 (19)0.2676 (2)0.17793 (6)0.0215 (4)
H4A0.07770.23670.21100.026*
H4B0.10790.37950.16930.026*
C50.13917 (19)0.0475 (2)0.17705 (7)0.0216 (4)
H5A0.08960.08550.21050.026*
H5B0.11260.06580.17180.026*
C60.15708 (18)0.2177 (2)0.07798 (7)0.0207 (4)
H6A0.13880.13780.04920.025*
H6B0.26590.22730.08290.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0309 (3)0.0212 (3)0.0228 (2)0.00077 (18)0.00016 (16)0.00473 (16)
Cl20.0180 (3)0.0320 (3)0.0281 (3)0.00443 (16)0.00639 (15)0.00751 (18)
Cl30.0168 (3)0.0315 (3)0.0331 (3)0.00376 (17)0.00498 (16)0.00645 (18)
Cl40.0355 (3)0.0231 (3)0.0299 (3)0.00145 (18)0.00172 (17)0.00903 (18)
C10.0210 (9)0.0203 (8)0.0215 (8)0.0006 (7)0.0031 (7)0.0003 (7)
C20.0157 (9)0.0173 (8)0.0201 (8)0.0012 (6)0.0019 (6)0.0006 (7)
C30.0167 (9)0.0167 (8)0.0188 (8)0.0017 (6)0.0003 (6)0.0010 (6)
C40.0141 (8)0.0286 (9)0.0219 (8)0.0014 (7)0.0021 (6)0.0004 (7)
C50.0157 (8)0.0275 (9)0.0217 (8)0.0002 (7)0.0012 (6)0.0022 (7)
C60.0210 (10)0.0196 (8)0.0213 (8)0.0012 (7)0.0010 (6)0.0013 (7)
Geometric parameters (Å, º) top
Cl1—C11.8103 (18)C3—C61.523 (2)
Cl2—C41.7999 (18)C3—C41.528 (2)
Cl3—C51.7987 (18)C3—H31.0000
Cl4—C61.8054 (18)C4—H4A0.9900
C1—C21.525 (2)C4—H4B0.9900
C1—H1A0.9900C5—H5A0.9900
C1—H1B0.9900C5—H5B0.9900
C2—C51.526 (2)C6—H6A0.9900
C2—C31.551 (2)C6—H6B0.9900
C2—H21.0000
C2—C1—Cl1111.49 (11)C3—C4—Cl2110.75 (12)
C2—C1—H1A109.3C3—C4—H4A109.5
Cl1—C1—H1A109.3Cl2—C4—H4A109.5
C2—C1—H1B109.3C3—C4—H4B109.5
Cl1—C1—H1B109.3Cl2—C4—H4B109.5
H1A—C1—H1B108.0H4A—C4—H4B108.1
C1—C2—C5110.98 (14)C2—C5—Cl3110.91 (12)
C1—C2—C3113.87 (13)C2—C5—H5A109.5
C5—C2—C3109.97 (13)Cl3—C5—H5A109.5
C1—C2—H2107.2C2—C5—H5B109.5
C5—C2—H2107.2Cl3—C5—H5B109.5
C3—C2—H2107.2H5A—C5—H5B108.0
C6—C3—C4110.60 (14)C3—C6—Cl4112.17 (11)
C6—C3—C2114.11 (13)C3—C6—H6A109.2
C4—C3—C2110.21 (13)Cl4—C6—H6A109.2
C6—C3—H3107.2C3—C6—H6B109.2
C4—C3—H3107.2Cl4—C6—H6B109.2
C2—C3—H3107.2H6A—C6—H6B107.9
Cl1—C1—C2—C564.59 (16)C2—C3—C4—Cl2166.96 (11)
Cl1—C1—C2—C360.14 (17)C1—C2—C5—Cl366.41 (15)
C1—C2—C3—C640.2 (2)C3—C2—C5—Cl3166.68 (11)
C5—C2—C3—C6165.43 (14)C4—C3—C6—Cl467.52 (15)
C1—C2—C3—C4165.31 (13)C2—C3—C6—Cl457.41 (17)
C5—C2—C3—C469.43 (18)Cl1—C1—C2—H2178.6
C6—C3—C4—Cl265.92 (15)Cl4—C6—C3—H3175.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl30.992.763.2097 (19)108
C4—H4B···Cl40.992.803.2445 (19)108
C5—H5B···Cl10.992.743.2069 (19)109
C6—H6B···Cl20.992.723.1940 (18)110
C2—H2···Cl3i1.002.933.8599 (19)155
C3—H3···Cl2ii1.002.863.8092 (19)160
C4—H4B···Cl3i0.992.923.657 (2)132
C5—H5A···Cl2iii0.992.903.6951 (19)138
C6—H6A···Cl1iv0.992.843.655 (2)140
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC6H10Cl4
Mr223.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)93
a, b, c (Å)8.998 (3), 8.400 (3), 24.643 (7)
V3)1862.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.25 × 0.25 × 0.10
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.746, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8405, 1658, 1553
Rint0.050
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.12
No. of reflections1658
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl30.992.763.2097 (19)108
C4—H4B···Cl40.992.803.2445 (19)108
C5—H5B···Cl10.992.743.2069 (19)109
C6—H6B···Cl20.992.723.1940 (18)110
C2—H2···Cl3i1.002.933.8599 (19)155
C3—H3···Cl2ii1.002.863.8092 (19)160
C4—H4B···Cl3i0.992.923.657 (2)132
C5—H5A···Cl2iii0.992.903.6951 (19)138
C6—H6A···Cl1iv0.992.843.655 (2)140
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x, y, z.
 

Footnotes

Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, USA.

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Sciences Research Council (EPSRC, UK) for financial support.

References

First citationBart, J. C. J., Bassi, I. W. & Calcaterra, M. (1979). Acta Cryst. B35, 2646–2650.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBart, J. C. J., Bassi, I. W. & Calcaterra, M. (1980). Acta Cryst. B36, 421–424.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrenzen, G. & Coelhan, M. (1998). Private communication (refcode HITZOZ). CCDC, Cambridge, England.  Google Scholar
First citationFrenzen, G., Sippel, H. & Coelhan, M. (1999). Acta Cryst. C55, IUC9800079.  CrossRef IUCr Journals Google Scholar
First citationKabalka, G. W., Wu, Z., Ju, Y. & Yao, M.-L. (2005). J. Org. Chem. 70, 10285–10291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKarapetyan, A. A., Tamazyan, R. A., Mikaelyan, A. R., Grigoryan, A. M., Vardanyan, A. S. & Nikogosyan, L. Zh. (2008). J. Struct. Chem. 49, 965–968.  Web of Science CrossRef CAS Google Scholar
First citationKlaeboe, P., Klewe, B., Martinsen, K., Nielsen, C. J., Powell, D. L. & Stubbles, D. J. (1986). J. Mol. Struct. 140, 1–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationPodsiadło, M. & Katrusiak, A. (2006). Acta Cryst. B62, 1071–1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeinges, K. & Spänig, R. (1968). Chem. Ber. 101, 3010–3017.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds