supplementary materials


vm2180 scheme

Acta Cryst. (2012). E68, m1486-m1487    [ doi:10.1107/S1600536812046065 ]

[(R)-2,2-Bis(diphenylphosphanyl)-1,1'-binaphthyl-[kappa]2P,P']{2-[(2R)-1,2-diamino-1-(4-methoxyphenyl)-3-methylbutyl]-5-methoxyphenyl-[kappa]C1}hydridoruthenium(II) benzene monosolvate

K. Abdur-Rashid and A. J. Lough

Abstract top

In the title complex, [Ru(C19H25N2O2)H(C44H32P2)]·C6H6, the RuII ion is in a distorted octahedral coordination environment with the hydride H atom trans to the tertiary carbinamine N atom, giving an H-Ru-N angle of 160.8 (12)°. The equatorial sites are occupied by two P atoms, the secondary carbinamine N atom and a coordinated C atom.

Comment top

Asymmetric hydrogenation of ketones and imines constitute a very valuable technology for the production of chiral alcohols and amines which are useful precursors and end products in the pharmaceutical, agrochemical, fragrance and flavor industries. A variety of useful catalysts have been developed that are broadly applicable, very active and highly selective. These include ruthenium complexes of the type RuCl2(diphosphine)(diamine) originally developed by Noyori and coworkers for ketone hydrogenation processes (Ohkuma et al., 1995; Doucet et al., 1998). Our research (Abdur-Rashid et al., 2000; Abdur-Rashid, Lough et al., 2001) and that of others (Cobley & Henschke, 2003) demonstrated that these catalysts were also capable of reducing imines to amines, including the production of single isomer chiral products. There have been extensive investigations towards isolating and understanding the nature of the active catalytic species generated from RuCl2(diphosphine)(diamine) under the reaction conditions of added base in the presence of hydrogen gas. Our seminal papers (Abdur-Rashid, Faatz et al., 2001; Abdur-Rashid et al., 2002; Abbel et al., 2005) proved that the active catalysts are ruthenium dihydride compounds and demonstrated the role of the bifunctional cis-Ru—H···H—N motif to provide nascent, polarized dihydrogen (Hδ+···Hδ-) for the catalytic ionic hydrogenation of polar CO and CN bonds. Our research also resulted in the unprecedented isolation and characterization of stable hydridoamido intermediates and proved that these species are responsible for the rapid heterolytic activation and splitting of hydrogen gas (Abdur-Rashid, Faatz et al., 2001; Abdur-Rashid, et al., 2002). Recently Ohkuma and coworkers reported chlororuthenabicyclic compounds (Matsumura et al., 2011) which are derived from ruthenium complexes containing a chiral diphosphine and the chiral diamine ligand daipen. The work demonstrated that in the presence of base and hydrogen gas these ruthenabicyclic compounds are very useful for the hydrogenation of a wide variety of ketones and are capable of producing chiral alcohols with high enantioselectivities. The authors proposed a mechanism based on a hydridoruthenabicyclic catalytic species. However, their attempts to isolate and characterize this species were not successful. We previously reported the preparation and characterization of the trans-dihydride complex RuH2(R-binap)(R-daipen) (1) (Fig. 1), [R-Binap = (R)-bis(diphenylphosphanyl)-1,1-binaphthyl and R-Daipen = (R)-1,1-bis(4-methoxyphenyl)-3-methylbutane-1,2-diamine] and proved that this compound was an active base-free catalyst for the hydrogenation of ketones in the presence of hydrogen gas (Abdur-Rashid, Faatz et al., 2001).

The title compound (I) was readily obtained from (1) by the loss of hydrogen upon stirring a suspension of (1) in hexanes for 48 h at room temperature under an atmosphere of argon. It was demonstrated that the novel hydridoruthenabicyclic compound (I) is also a very effective base-free catalyst for the hydrogenation of ketones to alcohols. For example, a catalytic amount of (I) resulted in the complete conversion of neat acetophenone (S:C = 2000:1) to (S)-1-phenylethanol (92% e.e.) within 12 h at room temperature in the presence of hydrogen gas (3 atm.).

The molecular structure of complex (I) is shown in Fig. 2. The RuII ion is in a distorted octahedral coordination environment with the hydride H atom (H1RU) trans to the tertiary carbinamine nitrogen atom (N2) giving an H1RU—Ru1—N2 angle of 160.8 (12)°. The equatorial sites are occupied by two phosphorus atoms (P1 and P2), the secondary carbinamine nitrogen atom (N1) and a coordinated carbon atom (C11). The geometric parameters in (I) are comparable to related structures (Guo et al., 2004; Li et al., 2004).

Related literature top

For the synthesis of Ru(II) hydride complexes with an RuN2P2 coordination environment, see: Abdur-Rashid, Faatz et al. (2001); Abdur-Rashid, Abbel et al. (2005); Ohkuma et al. (1995). For their use as catalysts, see: Abdur-Rashid, Guo et al. (2005); Abdur-Rashid et al. (2000); Abdur-Rashid, Lough et al. (2001); Cobley & Henschke (2003); Doucet et al. (1998); Matsumura et al. (2011). For related structures, see: Guo et al. (2004); Li et al. (2004). For kinetic studies, see: Abbel et al. (2005); Abdur-Rashid et al. (2002).

Experimental top

A solution of K-Selectride (100 ml of a 1.0 M solution in THF) was added to a solution of RuHCl(R-binap)(R-daipen) (100 mg) in THF (5 ml) and the mixture stirred under hydrogen gas at room temperature for 2 h. The mixture was filtered and the filtrate evaporated to dryness to give the bright yellow dihydride compound RuH2(R-binap)(R-daipen) (1) [R-Binap = (R)-bis(diphenylphosphanyl)-1,1-binaphthyl and R-Daipen = (R)-1,1-Bis(4-methoxyphenyl)-3-methylbutane-1,2-diamine]. This was suspended in hexanes (5 ml) and the suspension stirred for 48 h at room temperature under argon. The solids were filtered and washed with hexanes (5 ml) and dried under vacuum to give 76 mg of the hydridoruthenabicyclic compound (I) as a bright yellow solid. X-ray diffraction quality single crystals were grown by the slow diffusion of hexanes into a solution of (I) in benzene.

Refinement top

Hydrogen atoms bonded to C atoms were placed in calculated positions with C—H = 0.95–1.00 Å and were included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. The hydride and amine H atoms were refined independently with isotropic displacement parameters. The benzene solvent molecule was fitted as a regular hexagon with C—C = 1.39 Å using the AFIX 66 command in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthetic scheme
[Figure 2] Fig. 2. The molecular structure of (I). Displacement ellipsoids are at the 30% probability level. The benzene solvent molecule and H atoms bonded to C atoms are not shown.
[(R)-2,2-Bis(diphenylphosphanyl)-1,1'-binaphthyl- κ2P,P']{2-[(2R)-1,2-diamino-1-(4-methoxyphenyl)- 3-methylbutyl]-5-methoxyphenyl-κC1}hydridoruthenium(II) benzene monosolvate top
Crystal data top
[Ru(C19H25N2O2)H(C44H32P2)]·C6H6F(000) = 2328
Mr = 1116.23Dx = 1.330 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 11534 reflections
a = 38.8848 (8) Åθ = 2.7–27.5°
b = 13.5741 (3) ŵ = 0.39 mm1
c = 10.8871 (2) ÅT = 150 K
β = 103.967 (1)°Block, yellow
V = 5576.6 (2) Å30.35 × 0.32 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
11534 independent reflections
Radiation source: fine-focus sealed tube10079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 5050
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1717
Tmin = 0.876, Tmax = 0.909l = 1414
21246 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0286P)2 + 2.2793P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.54 e Å3
11534 reflectionsΔρmin = 0.54 e Å3
698 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00045 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 4924 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.045 (19)
Crystal data top
[Ru(C19H25N2O2)H(C44H32P2)]·C6H6V = 5576.6 (2) Å3
Mr = 1116.23Z = 4
Monoclinic, C2Mo Kα radiation
a = 38.8848 (8) ŵ = 0.39 mm1
b = 13.5741 (3) ÅT = 150 K
c = 10.8871 (2) Å0.35 × 0.32 × 0.25 mm
β = 103.967 (1)°
Data collection top
Nonius KappaCCD
diffractometer
11534 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
10079 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.909Rint = 0.051
21246 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.54 e Å3
S = 1.04Δρmin = 0.54 e Å3
11534 reflectionsAbsolute structure: Flack (1983), 4924 Friedel pairs
698 parametersFlack parameter: 0.045 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.365924 (6)0.782933 (18)0.603130 (19)0.02226 (7)
H1RU0.3380 (8)0.809 (3)0.685 (3)0.029 (9)*
P10.40933 (2)0.81338 (6)0.77366 (7)0.02362 (18)
P20.35821 (2)0.94374 (6)0.54146 (7)0.02201 (17)
O10.33911 (8)0.4662 (2)0.8879 (2)0.0368 (7)
O20.44751 (7)0.3603 (2)0.1801 (2)0.0398 (6)
N10.32414 (7)0.7297 (2)0.4435 (3)0.0275 (6)
H1B0.3095 (10)0.778 (4)0.392 (4)0.056 (11)*
H1C0.3104 (12)0.705 (3)0.489 (4)0.048 (13)*
N20.39494 (7)0.6998 (2)0.4842 (3)0.0247 (6)
H2A0.4178 (11)0.684 (3)0.534 (3)0.039 (11)*
H2B0.3993 (9)0.725 (3)0.428 (3)0.016 (9)*
C10.33628 (8)0.6555 (2)0.3619 (3)0.0254 (7)
H1A0.34210.69270.29030.031*
C20.37185 (8)0.6111 (2)0.4411 (3)0.0236 (6)
C30.30748 (10)0.5792 (3)0.3020 (3)0.0317 (8)
H3A0.31980.51720.28710.038*
C40.28619 (11)0.6170 (4)0.1732 (4)0.0482 (11)
H4A0.26810.56840.13540.072*
H4B0.30220.62720.11720.072*
H4C0.27470.67940.18480.072*
C50.28160 (9)0.5531 (3)0.3852 (3)0.0368 (8)
H5A0.29510.53610.47070.055*
H5B0.26690.49690.34810.055*
H5C0.26640.60990.38940.055*
C60.36574 (8)0.5661 (3)0.5624 (3)0.0260 (7)
C70.36063 (8)0.4660 (3)0.5759 (3)0.0279 (7)
H7A0.36350.42230.51090.033*
C80.35141 (9)0.4281 (3)0.6828 (3)0.0315 (7)
H8A0.34750.35950.69090.038*
C90.34817 (9)0.4944 (3)0.7772 (3)0.0294 (7)
C100.35333 (9)0.5946 (2)0.7629 (3)0.0279 (7)
H10A0.35070.63780.82880.033*
C110.36215 (8)0.6352 (2)0.6568 (3)0.0237 (6)
C120.33415 (11)0.3639 (3)0.9057 (4)0.0443 (10)
H12A0.32840.35350.98760.066*
H12B0.35590.32820.90390.066*
H12C0.31470.33940.83780.066*
C130.39027 (8)0.5435 (2)0.3657 (3)0.0266 (7)
C140.38130 (9)0.5383 (3)0.2346 (3)0.0315 (8)
H14A0.36210.57700.18880.038*
C150.39949 (9)0.4781 (3)0.1678 (3)0.0325 (8)
H15A0.39260.47550.07800.039*
C160.42779 (9)0.4219 (3)0.2338 (3)0.0320 (7)
C170.43839 (9)0.4296 (3)0.3658 (3)0.0320 (8)
H17A0.45840.39360.41130.038*
C180.41996 (9)0.4893 (3)0.4300 (3)0.0308 (7)
H18A0.42750.49390.51960.037*
C190.43718 (12)0.3472 (3)0.0455 (4)0.0470 (10)
H19A0.45450.30500.01880.071*
H19B0.43630.41140.00380.071*
H19C0.41370.31630.02210.071*
C200.37929 (8)1.0340 (2)0.7784 (3)0.0242 (6)
C210.35121 (8)1.0207 (2)0.6733 (3)0.0249 (7)
C220.31719 (8)1.0571 (3)0.6782 (3)0.0287 (7)
H22A0.29821.05270.60480.034*
C230.31115 (9)1.0981 (3)0.7854 (3)0.0328 (8)
H23A0.28821.12260.78480.039*
C240.33835 (10)1.1045 (3)0.8968 (3)0.0298 (8)
C250.33263 (10)1.1434 (3)1.0118 (3)0.0346 (8)
H25A0.30951.16451.01450.042*
C260.35911 (11)1.1509 (3)1.1161 (3)0.0403 (9)
H26A0.35481.17851.19120.048*
C270.39342 (11)1.1178 (3)1.1146 (3)0.0414 (9)
H27A0.41191.12151.18950.050*
C280.40020 (10)1.0803 (3)1.0063 (3)0.0322 (8)
H28A0.42351.05921.00650.039*
C290.37304 (9)1.0725 (2)0.8940 (3)0.0270 (7)
C300.41747 (8)1.0206 (2)0.7768 (3)0.0227 (6)
C310.43490 (8)0.9308 (3)0.7890 (3)0.0250 (7)
C320.47271 (9)0.9318 (3)0.8113 (3)0.0300 (7)
H32A0.48530.87140.82740.036*
C330.49113 (9)1.0167 (3)0.8102 (3)0.0306 (8)
H33A0.51621.01430.82530.037*
C340.47370 (8)1.1086 (3)0.7871 (3)0.0275 (7)
C350.49190 (9)1.1972 (3)0.7781 (3)0.0342 (8)
H35A0.51681.19570.78750.041*
C360.47426 (8)1.2858 (4)0.7560 (3)0.0349 (7)
H36A0.48681.34470.74870.042*
C370.43762 (8)1.2884 (3)0.7444 (3)0.0327 (7)
H37A0.42541.34950.73010.039*
C380.41919 (9)1.2040 (2)0.7533 (3)0.0272 (7)
H38A0.39441.20770.74590.033*
C390.43620 (8)1.1113 (2)0.7731 (3)0.0250 (7)
C410.31730 (8)0.9610 (2)0.4156 (3)0.0256 (7)
C420.28469 (9)0.9283 (3)0.4369 (3)0.0295 (7)
H42A0.28400.90220.51720.035*
C430.25372 (9)0.9338 (3)0.3420 (3)0.0384 (8)
H43A0.23180.91400.35850.046*
C440.25466 (10)0.9684 (3)0.2222 (4)0.0493 (11)
H44A0.23350.97320.15720.059*
C450.28661 (11)0.9954 (4)0.1995 (4)0.0485 (11)
H45A0.28761.01580.11690.058*
C460.31755 (10)0.9933 (3)0.2953 (3)0.0347 (9)
H46A0.33921.01440.27790.042*
C510.39023 (8)1.0214 (3)0.4854 (3)0.0270 (7)
C520.42172 (9)0.9793 (3)0.4729 (3)0.0354 (8)
H52A0.42520.91020.48250.042*
C530.44850 (10)1.0390 (4)0.4461 (3)0.0517 (12)
H53A0.47001.01010.43710.062*
C540.44376 (12)1.1387 (4)0.4328 (4)0.0570 (14)
H54A0.46231.17870.41680.068*
C550.41235 (13)1.1818 (3)0.4424 (3)0.0487 (11)
H55A0.40891.25080.43110.058*
C560.38568 (10)1.1226 (3)0.4688 (3)0.0348 (8)
H56A0.36401.15200.47560.042*
C610.44425 (9)0.7199 (3)0.7828 (3)0.0303 (7)
C620.46595 (9)0.7245 (3)0.6967 (3)0.0332 (8)
H62A0.46410.78000.64240.040*
C630.48997 (10)0.6504 (3)0.6887 (4)0.0408 (9)
H63A0.50470.65540.63080.049*
C640.49206 (12)0.5694 (3)0.7665 (5)0.0534 (12)
H64A0.50860.51850.76340.064*
C650.47035 (12)0.5619 (3)0.8486 (4)0.0543 (11)
H65A0.47140.50460.89950.065*
C660.44688 (10)0.6369 (3)0.8581 (4)0.0406 (9)
H66A0.43250.63120.91700.049*
C710.40170 (9)0.8134 (2)0.9349 (3)0.0298 (7)
C720.36758 (9)0.8250 (3)0.9506 (3)0.0327 (7)
H72A0.34800.82380.87880.039*
C730.36170 (11)0.8386 (3)1.0712 (3)0.0396 (9)
H73A0.33820.84651.08060.048*
C740.38965 (12)0.8404 (3)1.1762 (3)0.0429 (10)
H74A0.38560.85181.25760.052*
C750.42389 (12)0.8256 (3)1.1626 (3)0.0474 (10)
H75A0.44310.82391.23540.057*
C760.43013 (10)0.8134 (3)1.0431 (3)0.0386 (9)
H76A0.45370.80491.03440.046*
C1S0.23578 (10)0.2324 (4)0.2839 (5)0.113 (3)
H1SA0.21480.20430.29930.135*
C2S0.23558 (14)0.2706 (5)0.1653 (4)0.141 (4)
H2SA0.21450.26860.09960.170*
C3S0.2662 (2)0.3117 (4)0.1429 (4)0.134 (4)
H3SA0.26610.33780.06190.160*
C4S0.29709 (15)0.3146 (3)0.2392 (7)0.119 (3)
H4SA0.31800.34270.22390.143*
C5S0.29729 (9)0.2764 (4)0.3578 (5)0.101 (2)
H5SA0.31840.27840.42360.122*
C6S0.26664 (14)0.2353 (3)0.3802 (4)0.0886 (18)
H6SA0.26680.20920.46130.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01979 (11)0.02082 (11)0.02517 (11)0.00075 (12)0.00348 (8)0.00106 (12)
P10.0211 (4)0.0227 (4)0.0256 (4)0.0000 (3)0.0029 (3)0.0001 (3)
P20.0188 (4)0.0225 (4)0.0243 (4)0.0010 (3)0.0042 (3)0.0011 (3)
O10.0467 (17)0.0315 (16)0.0327 (14)0.0044 (13)0.0104 (12)0.0072 (12)
O20.0353 (14)0.0433 (15)0.0419 (14)0.0072 (12)0.0116 (12)0.0109 (11)
N10.0214 (14)0.0269 (16)0.0313 (14)0.0012 (12)0.0005 (12)0.0045 (12)
N20.0241 (15)0.0223 (15)0.0274 (14)0.0010 (12)0.0057 (12)0.0008 (12)
C10.0222 (15)0.0253 (17)0.0267 (15)0.0007 (13)0.0018 (12)0.0021 (13)
C20.0245 (16)0.0203 (16)0.0246 (15)0.0034 (13)0.0029 (12)0.0023 (12)
C30.0270 (19)0.0313 (19)0.0344 (18)0.0028 (16)0.0027 (14)0.0073 (15)
C40.034 (2)0.072 (3)0.034 (2)0.008 (2)0.0001 (16)0.008 (2)
C50.0269 (18)0.038 (2)0.0444 (19)0.0074 (16)0.0065 (15)0.0074 (16)
C60.0210 (16)0.0236 (17)0.0317 (16)0.0005 (14)0.0028 (13)0.0007 (14)
C70.0231 (16)0.0248 (17)0.0351 (17)0.0013 (14)0.0060 (13)0.0031 (14)
C80.0289 (18)0.0214 (17)0.0419 (18)0.0012 (14)0.0039 (14)0.0054 (15)
C90.0239 (17)0.0295 (18)0.0330 (17)0.0019 (14)0.0031 (13)0.0090 (14)
C100.0274 (17)0.0253 (18)0.0288 (16)0.0030 (14)0.0029 (13)0.0022 (13)
C110.0204 (15)0.0226 (16)0.0269 (15)0.0017 (13)0.0031 (12)0.0026 (13)
C120.049 (2)0.034 (2)0.052 (2)0.0016 (19)0.017 (2)0.0153 (18)
C130.0233 (16)0.0259 (17)0.0305 (16)0.0002 (14)0.0059 (12)0.0012 (13)
C140.0284 (18)0.036 (2)0.0293 (16)0.0030 (15)0.0051 (13)0.0003 (15)
C150.0311 (19)0.034 (2)0.0316 (18)0.0008 (16)0.0060 (15)0.0009 (15)
C160.0301 (18)0.0269 (18)0.0417 (18)0.0060 (15)0.0137 (15)0.0072 (15)
C170.0264 (18)0.033 (2)0.0357 (18)0.0039 (16)0.0048 (14)0.0006 (16)
C180.0291 (18)0.0301 (18)0.0307 (17)0.0012 (15)0.0025 (14)0.0027 (14)
C190.052 (2)0.050 (3)0.043 (2)0.008 (2)0.0173 (19)0.0104 (19)
C200.0245 (16)0.0206 (16)0.0281 (15)0.0001 (13)0.0077 (12)0.0001 (13)
C210.0231 (16)0.0236 (17)0.0284 (15)0.0008 (14)0.0067 (12)0.0020 (13)
C220.0197 (16)0.0310 (19)0.0350 (17)0.0024 (14)0.0057 (13)0.0044 (14)
C230.0244 (17)0.034 (2)0.0435 (19)0.0001 (15)0.0141 (15)0.0099 (16)
C240.033 (2)0.026 (2)0.0345 (19)0.0032 (16)0.0158 (16)0.0049 (15)
C250.038 (2)0.030 (2)0.042 (2)0.0004 (16)0.0214 (16)0.0015 (16)
C260.063 (3)0.032 (2)0.0300 (18)0.0003 (18)0.0198 (17)0.0032 (15)
C270.051 (2)0.043 (2)0.0293 (18)0.001 (2)0.0080 (17)0.0016 (17)
C280.0345 (19)0.0322 (19)0.0303 (16)0.0040 (16)0.0082 (14)0.0018 (14)
C290.0328 (18)0.0225 (16)0.0274 (15)0.0036 (14)0.0102 (13)0.0001 (13)
C300.0215 (15)0.0239 (16)0.0223 (14)0.0029 (13)0.0047 (11)0.0049 (12)
C310.0231 (16)0.0268 (18)0.0250 (15)0.0019 (14)0.0055 (12)0.0014 (13)
C320.0231 (16)0.0271 (18)0.0384 (17)0.0051 (14)0.0046 (13)0.0030 (14)
C330.0170 (16)0.0304 (19)0.0440 (19)0.0010 (14)0.0066 (14)0.0070 (16)
C340.0240 (16)0.0285 (18)0.0309 (16)0.0037 (14)0.0081 (13)0.0062 (13)
C350.0257 (17)0.034 (2)0.0443 (19)0.0078 (15)0.0114 (15)0.0054 (16)
C360.0359 (16)0.0251 (15)0.0465 (16)0.006 (2)0.0157 (13)0.003 (2)
C370.0356 (16)0.0276 (17)0.0356 (14)0.001 (2)0.0096 (12)0.0017 (19)
C380.0261 (17)0.0268 (18)0.0278 (15)0.0022 (14)0.0050 (13)0.0022 (13)
C390.0247 (16)0.0262 (17)0.0241 (15)0.0033 (14)0.0061 (12)0.0070 (13)
C410.0217 (16)0.0221 (16)0.0323 (16)0.0023 (13)0.0053 (13)0.0041 (13)
C420.0265 (17)0.0284 (18)0.0319 (16)0.0002 (15)0.0036 (13)0.0019 (14)
C430.0257 (18)0.040 (2)0.046 (2)0.0023 (17)0.0025 (15)0.0000 (17)
C440.031 (2)0.063 (3)0.044 (2)0.010 (2)0.0103 (16)0.009 (2)
C450.038 (2)0.068 (3)0.033 (2)0.013 (2)0.0042 (16)0.011 (2)
C460.0270 (19)0.043 (2)0.0316 (18)0.0062 (17)0.0020 (15)0.0018 (16)
C510.0241 (16)0.0345 (19)0.0206 (14)0.0043 (15)0.0018 (12)0.0033 (13)
C520.0264 (18)0.053 (2)0.0267 (16)0.0031 (16)0.0074 (13)0.0045 (15)
C530.029 (2)0.097 (4)0.0314 (19)0.015 (2)0.0104 (15)0.008 (2)
C540.050 (3)0.090 (4)0.031 (2)0.050 (3)0.0090 (18)0.005 (2)
C550.071 (3)0.046 (2)0.0299 (18)0.032 (2)0.0137 (18)0.0001 (17)
C560.043 (2)0.036 (2)0.0254 (16)0.0092 (18)0.0075 (15)0.0007 (15)
C610.0243 (17)0.0277 (18)0.0347 (17)0.0008 (14)0.0011 (13)0.0042 (14)
C620.0271 (18)0.033 (2)0.0359 (18)0.0049 (15)0.0010 (14)0.0093 (15)
C630.0277 (18)0.037 (2)0.056 (2)0.0038 (16)0.0061 (16)0.0146 (18)
C640.034 (2)0.041 (3)0.083 (3)0.008 (2)0.009 (2)0.007 (2)
C650.047 (3)0.033 (2)0.079 (3)0.009 (2)0.007 (2)0.011 (2)
C660.033 (2)0.032 (2)0.054 (2)0.0013 (17)0.0036 (17)0.0073 (18)
C710.0344 (17)0.0259 (18)0.0279 (15)0.0046 (14)0.0053 (13)0.0002 (12)
C720.0350 (19)0.0342 (18)0.0291 (16)0.0041 (15)0.0084 (14)0.0033 (14)
C730.042 (2)0.044 (2)0.0365 (18)0.0026 (18)0.0168 (16)0.0014 (17)
C740.063 (3)0.041 (2)0.0257 (18)0.007 (2)0.0133 (17)0.0020 (16)
C750.057 (3)0.053 (2)0.0252 (17)0.008 (2)0.0026 (16)0.0030 (16)
C760.0342 (18)0.046 (2)0.0329 (16)0.0025 (16)0.0026 (14)0.0028 (15)
C1S0.059 (4)0.151 (7)0.138 (6)0.013 (4)0.044 (4)0.062 (5)
C2S0.104 (6)0.227 (11)0.082 (4)0.089 (7)0.000 (4)0.020 (6)
C3S0.199 (9)0.117 (8)0.111 (6)0.067 (7)0.090 (7)0.006 (5)
C4S0.128 (7)0.055 (4)0.215 (9)0.013 (4)0.120 (7)0.041 (5)
C5S0.063 (3)0.070 (4)0.158 (6)0.010 (4)0.000 (4)0.055 (5)
C6S0.110 (5)0.067 (4)0.088 (4)0.010 (4)0.024 (4)0.005 (3)
Geometric parameters (Å, º) top
Ru1—H1RU1.60 (3)C27—H27A0.9500
Ru1—C112.104 (3)C28—C291.413 (5)
Ru1—N12.195 (3)C28—H28A0.9500
Ru1—N22.219 (3)C30—C311.386 (5)
Ru1—P12.2258 (8)C30—C391.435 (5)
Ru1—P22.2821 (9)C31—C321.431 (4)
P1—C611.843 (3)C32—C331.358 (5)
P1—C711.849 (3)C32—H32A0.9500
P1—C311.864 (3)C33—C341.412 (5)
P2—C511.845 (3)C33—H33A0.9500
P2—C411.847 (3)C34—C351.411 (5)
P2—C211.848 (3)C34—C391.430 (4)
O1—C91.388 (4)C35—C361.377 (6)
O1—C121.422 (5)C35—H35A0.9500
O2—C161.358 (4)C36—C371.400 (4)
O2—C191.433 (4)C36—H36A0.9500
N1—H1C0.88 (4)C37—C381.367 (5)
N1—H1B0.96 (5)C37—H37A0.9500
N1—C11.493 (4)C38—C391.414 (5)
N2—H2B0.76 (3)C38—H38A0.9500
N2—H2A0.95 (4)C41—C461.384 (5)
N2—C21.508 (4)C41—C421.414 (5)
C1—C31.550 (5)C42—C431.387 (5)
C1—C21.564 (4)C42—H42A0.9500
C1—H1A1.0000C43—C441.394 (5)
C2—C131.521 (4)C43—H43A0.9500
C2—C61.525 (4)C44—C451.374 (6)
C3—C41.534 (5)C44—H44A0.9500
C3—C51.548 (5)C45—C461.389 (5)
C3—H3A1.0000C45—H45A0.9500
C4—H4A0.9800C46—H46A0.9500
C4—H4B0.9800C51—C521.387 (5)
C4—H4C0.9800C51—C561.391 (5)
C5—H5A0.9800C52—C531.405 (6)
C5—H5B0.9800C52—H52A0.9500
C5—H5C0.9800C53—C541.369 (7)
C6—C71.386 (5)C53—H53A0.9500
C6—C111.423 (5)C54—C551.380 (7)
C7—C81.397 (5)C54—H54A0.9500
C7—H7A0.9500C55—C561.396 (5)
C8—C91.395 (5)C55—H55A0.9500
C8—H8A0.9500C56—H56A0.9500
C9—C101.390 (5)C61—C661.382 (5)
C10—C111.395 (4)C61—C621.406 (5)
C10—H10A0.9500C62—C631.390 (5)
C12—H12A0.9800C62—H62A0.9500
C12—H12B0.9800C63—C641.378 (6)
C12—H12C0.9800C63—H63A0.9500
C13—C141.387 (4)C64—C651.373 (6)
C13—C181.405 (5)C64—H64A0.9500
C14—C151.395 (5)C65—C661.388 (6)
C14—H14A0.9500C65—H65A0.9500
C15—C161.388 (5)C66—H66A0.9500
C15—H15A0.9500C71—C721.387 (5)
C16—C171.399 (5)C71—C761.408 (5)
C17—C181.379 (5)C72—C731.398 (5)
C17—H17A0.9500C72—H72A0.9500
C18—H18A0.9500C73—C741.374 (5)
C19—H19A0.9800C73—H73A0.9500
C19—H19B0.9800C74—C751.389 (6)
C19—H19C0.9800C74—H74A0.9500
C20—C211.389 (4)C75—C761.390 (5)
C20—C291.437 (4)C75—H75A0.9500
C20—C301.500 (4)C76—H76A0.9500
C21—C221.425 (4)C1S—C2S1.3900
C22—C231.363 (4)C1S—C6S1.3900
C22—H22A0.9500C1S—H1SA0.9500
C23—C241.407 (5)C2S—C3S1.3900
C23—H23A0.9500C2S—H2SA0.9500
C24—C251.424 (5)C3S—C4S1.3900
C24—C291.424 (5)C3S—H3SA0.9500
C25—C261.340 (5)C4S—C5S1.3900
C25—H25A0.9500C4S—H4SA0.9500
C26—C271.412 (6)C5S—C6S1.3900
C26—H26A0.9500C5S—H5SA0.9500
C27—C281.367 (5)C6S—H6SA0.9500
H1RU—Ru1—C1187.1 (12)C26—C25—H25A119.3
H1RU—Ru1—N192.4 (11)C24—C25—H25A119.3
C11—Ru1—N179.53 (12)C25—C26—C27120.0 (3)
H1RU—Ru1—N2160.8 (12)C25—C26—H26A120.0
C11—Ru1—N275.93 (12)C27—C26—H26A120.0
N1—Ru1—N275.76 (10)C28—C27—C26120.5 (3)
H1RU—Ru1—P188.4 (11)C28—C27—H27A119.7
C11—Ru1—P192.01 (8)C26—C27—H27A119.7
N1—Ru1—P1171.43 (9)C27—C28—C29121.0 (3)
N2—Ru1—P1101.01 (8)C27—C28—H28A119.5
H1RU—Ru1—P284.1 (12)C29—C28—H28A119.5
C11—Ru1—P2168.64 (8)C28—C29—C24118.2 (3)
N1—Ru1—P293.57 (9)C28—C29—C20122.4 (3)
N2—Ru1—P2111.33 (8)C24—C29—C20119.4 (3)
P1—Ru1—P295.00 (3)C31—C30—C39121.2 (3)
C61—P1—C71103.52 (15)C31—C30—C20124.6 (3)
C61—P1—C31102.32 (16)C39—C30—C20114.0 (3)
C71—P1—C3196.82 (14)C30—C31—C32117.8 (3)
C61—P1—Ru1108.53 (11)C30—C31—P1120.4 (2)
C71—P1—Ru1121.91 (11)C32—C31—P1121.9 (3)
C31—P1—Ru1120.94 (10)C33—C32—C31122.0 (3)
C51—P2—C41102.20 (14)C33—C32—H32A119.0
C51—P2—C2199.88 (15)C31—C32—H32A119.0
C41—P2—C21104.05 (14)C32—C33—C34121.3 (3)
C51—P2—Ru1126.36 (12)C32—C33—H33A119.4
C41—P2—Ru1111.59 (11)C34—C33—H33A119.4
C21—P2—Ru1110.25 (10)C35—C34—C33122.5 (3)
C9—O1—C12117.3 (3)C35—C34—C39119.1 (3)
C16—O2—C19118.0 (3)C33—C34—C39118.3 (3)
H1C—N1—H1B104 (4)C36—C35—C34121.3 (3)
H1C—N1—C1114 (3)C36—C35—H35A119.3
H1B—N1—C1110 (3)C34—C35—H35A119.3
H1C—N1—Ru197 (3)C35—C36—C37119.4 (4)
H1B—N1—Ru1117 (3)C35—C36—H36A120.3
C1—N1—Ru1114.41 (19)C37—C36—H36A120.3
H2B—N2—H2A102 (3)C38—C37—C36120.8 (4)
H2B—N2—C2110 (3)C38—C37—H37A119.6
H2A—N2—C2113 (2)C36—C37—H37A119.6
H2B—N2—Ru1119 (3)C37—C38—C39121.5 (3)
H2A—N2—Ru1109 (2)C37—C38—H38A119.2
C2—N2—Ru1103.85 (19)C39—C38—H38A119.2
N1—C1—C3113.6 (3)C38—C39—C34117.8 (3)
N1—C1—C2107.3 (2)C38—C39—C30123.1 (3)
C3—C1—C2115.3 (3)C34—C39—C30119.1 (3)
N1—C1—H1A106.7C46—C41—C42117.8 (3)
C3—C1—H1A106.7C46—C41—P2122.8 (2)
C2—C1—H1A106.7C42—C41—P2119.0 (2)
N2—C2—C13109.1 (3)C43—C42—C41120.9 (3)
N2—C2—C6104.8 (2)C43—C42—H42A119.6
C13—C2—C6114.7 (3)C41—C42—H42A119.6
N2—C2—C1104.1 (3)C42—C43—C44120.0 (3)
C13—C2—C1113.8 (2)C42—C43—H43A120.0
C6—C2—C1109.3 (3)C44—C43—H43A120.0
C4—C3—C5109.1 (3)C45—C44—C43119.2 (3)
C4—C3—C1109.7 (3)C45—C44—H44A120.4
C5—C3—C1114.4 (3)C43—C44—H44A120.4
C4—C3—H3A107.8C44—C45—C46121.1 (4)
C5—C3—H3A107.8C44—C45—H45A119.5
C1—C3—H3A107.8C46—C45—H45A119.5
C3—C4—H4A109.5C41—C46—C45121.0 (3)
C3—C4—H4B109.5C41—C46—H46A119.5
H4A—C4—H4B109.5C45—C46—H46A119.5
C3—C4—H4C109.5C52—C51—C56118.8 (3)
H4A—C4—H4C109.5C52—C51—P2118.6 (3)
H4B—C4—H4C109.5C56—C51—P2122.2 (3)
C3—C5—H5A109.5C51—C52—C53119.9 (4)
C3—C5—H5B109.5C51—C52—H52A120.1
H5A—C5—H5B109.5C53—C52—H52A120.1
C3—C5—H5C109.5C54—C53—C52120.3 (4)
H5A—C5—H5C109.5C54—C53—H53A119.8
H5B—C5—H5C109.5C52—C53—H53A119.8
C7—C6—C11121.9 (3)C53—C54—C55120.7 (4)
C7—C6—C2122.7 (3)C53—C54—H54A119.7
C11—C6—C2115.1 (3)C55—C54—H54A119.7
C6—C7—C8121.5 (3)C54—C55—C56119.1 (4)
C6—C7—H7A119.3C54—C55—H55A120.4
C8—C7—H7A119.3C56—C55—H55A120.4
C9—C8—C7117.6 (3)C51—C56—C55121.2 (4)
C9—C8—H8A121.2C51—C56—H56A119.4
C7—C8—H8A121.2C55—C56—H56A119.4
O1—C9—C10116.2 (3)C66—C61—C62117.4 (3)
O1—C9—C8123.3 (3)C66—C61—P1122.8 (3)
C10—C9—C8120.6 (3)C62—C61—P1119.1 (3)
C9—C10—C11123.4 (3)C63—C62—C61122.0 (4)
C9—C10—H10A118.3C63—C62—H62A119.0
C11—C10—H10A118.3C61—C62—H62A119.0
C10—C11—C6115.2 (3)C64—C63—C62118.7 (4)
C10—C11—Ru1130.8 (2)C64—C63—H63A120.7
C6—C11—Ru1113.7 (2)C62—C63—H63A120.7
O1—C12—H12A109.5C65—C64—C63120.3 (4)
O1—C12—H12B109.5C65—C64—H64A119.8
H12A—C12—H12B109.5C63—C64—H64A119.8
O1—C12—H12C109.5C64—C65—C66120.8 (4)
H12A—C12—H12C109.5C64—C65—H65A119.6
H12B—C12—H12C109.5C66—C65—H65A119.6
C14—C13—C18117.3 (3)C61—C66—C65120.7 (4)
C14—C13—C2123.5 (3)C61—C66—H66A119.7
C18—C13—C2119.0 (3)C65—C66—H66A119.7
C13—C14—C15122.2 (3)C72—C71—C76118.6 (3)
C13—C14—H14A118.9C72—C71—P1119.6 (2)
C15—C14—H14A118.9C76—C71—P1121.4 (3)
C16—C15—C14119.3 (3)C71—C72—C73120.6 (3)
C16—C15—H15A120.3C71—C72—H72A119.7
C14—C15—H15A120.3C73—C72—H72A119.7
O2—C16—C15125.0 (3)C74—C73—C72120.5 (4)
O2—C16—C17115.6 (3)C74—C73—H73A119.7
C15—C16—C17119.4 (3)C72—C73—H73A119.7
C18—C17—C16120.3 (3)C73—C74—C75119.7 (3)
C18—C17—H17A119.9C73—C74—H74A120.2
C16—C17—H17A119.9C75—C74—H74A120.2
C17—C18—C13121.3 (3)C74—C75—C76120.3 (3)
C17—C18—H18A119.3C74—C75—H75A119.8
C13—C18—H18A119.3C76—C75—H75A119.8
O2—C19—H19A109.5C75—C76—C71120.3 (3)
O2—C19—H19B109.5C75—C76—H76A119.9
H19A—C19—H19B109.5C71—C76—H76A119.9
O2—C19—H19C109.5C2S—C1S—C6S120.0
H19A—C19—H19C109.5C2S—C1S—H1SA120.0
H19B—C19—H19C109.5C6S—C1S—H1SA120.0
C21—C20—C29120.2 (3)C1S—C2S—C3S120.0
C21—C20—C30123.9 (3)C1S—C2S—H2SA120.0
C29—C20—C30115.6 (3)C3S—C2S—H2SA120.0
C20—C21—C22118.4 (3)C4S—C3S—C2S120.0
C20—C21—P2118.6 (2)C4S—C3S—H3SA120.0
C22—C21—P2122.5 (2)C2S—C3S—H3SA120.0
C23—C22—C21121.8 (3)C3S—C4S—C5S120.0
C23—C22—H22A119.1C3S—C4S—H4SA120.0
C21—C22—H22A119.1C5S—C4S—H4SA120.0
C22—C23—C24121.0 (3)C6S—C5S—C4S120.0
C22—C23—H23A119.5C6S—C5S—H5SA120.0
C24—C23—H23A119.5C4S—C5S—H5SA120.0
C23—C24—C25122.4 (3)C5S—C6S—C1S120.0
C23—C24—C29118.8 (3)C5S—C6S—H6SA120.0
C25—C24—C29118.8 (3)C1S—C6S—H6SA120.0
C26—C25—C24121.5 (3)
Acknowledgements top

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding and donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

references
References top

Abbel, R., Abdur-Rashid, K., Faatz, M., Hadzovic, A., Lough, A. J. & Morris, R. H. (2005). J. Am. Chem. Soc. 127, 1870–1882.

Abdur-Rashid, K., Abbel, R., Hadzovic, A., Lough, A. J. & Morris, R. H. (2005). Inorg. Chem. 44, 2483–2492.

Abdur-Rashid, K., Clapham, S. E., Hadzovic, A., Harvey, J. N., Lough, A. J. & Morris, R. H. (2002). J. Am. Chem. Soc. 124, 15104–15118.

Abdur-Rashid, K., Faatz, M., Lough, A. J. & Morris, R. H. (2001). J. Am. Chem. Soc. 123, 7473–7474.

Abdur-Rashid, K., Guo, R., Lough, A. J., Morris, R. H. & Song, D. (2005). Adv. Synth. Catal. 347, 571–579.

Abdur-Rashid, K., Lough, A. J. & Morris, R. H. (2000). Organometallics, 19, 2655–2657.

Abdur-Rashid, K., Lough, A. J. & Morris, R. H. (2001). Organometallics, 20, 1047–1049.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Cobley, C. J. & Henschke, J. P. (2003). Adv. Synth. Catal. 345, 195–201.

Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). Angew. Chem. Int. Ed. 37, 1703–1707.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Guo, R., Lough, A. J., Morris, R. H. & Song, D. (2004). Organometallics, 23, 5524–5529.

Li, T., Churlaud, R., Lough, A. J., Abdur-Rashid, K. & Morris, R. H. (2004). Organometallics, 23, 6239–6247.

Matsumura, K., Arai, N., Hori, K., Saito, T., Sayo, N. & Ohkuma, T. (2011). J. Am. Chem. Soc. 133, 10696–10699.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

Ohkuma, T., Ooka, H., Ikariya, T. & Noyori, R. (1995). J. Am. Chem. Soc. 117, 10417–10418.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.