supplementary materials


vn2059 scheme

Acta Cryst. (2012). E68, m1520    [ doi:10.1107/S1600536812046892 ]

Bis(butane-1,4-diammonium) di-[mu]-oxido-bis[trifluoridooxidomolybdate(V)] monohydrate

J. Lhoste, A. Hemon-Ribaud, V. Maisonneuve, S. Jobic and M. Bujoli-Doeuff

Abstract top

The title compound, (C4H14N2)2[Mo2O4F6]·H2O, was obtained by solvothermal reaction at 443 K for 72 h from a mixture of MoO3, HF, 1,4-diaminobutane (dab), water and ethylene glycol. The structure consists of [Mo2O4F6]4- anionic dimers containing strongly distorted MoO3F3 octahedra (with twofold symmetry), diprotonated dab cations and water molecules (twofold symmetry) in the ratio 1:2:1. The cohesion of the three-dimensional structure is ensured through N-H...O, N-H...F and O-H...F interactions.

Comment top

Transition-metal oxofluoride hybrids have been intensively studied due to their interesting magnetic, optical and electrochemical properties (Nakajima et al., 2000). This paper presents a new organic-inorganic hybrid compound with molybdenum (V) and 1,4-butanediamine. To date, few hybrid oxofluoromolybdates (V) are reported in the literature. [MoOF5]2- monomers, [Mo2O2F9]3- and [Mo2O4F6]4- dimers were obtained with ammonium by Mattes et al. (1976, 1980). Adil et al. (2007) reported the previous monomer with tren cations. Two other compounds, built up from [Mo2O4F4]2- dimers with bipyridinium or phenanthrolinium, were synthesized by Chakravorti et al. (1983). It must be noted that the same author obtained many alkali metal molybdenum (V) complexes; their structures involve [MoOF5]2-, [Mo2O4F4]2-, [Mo2O4F5]3- and [Mo2O4F6]4- anions. Recently, a novel tetrameric unit [Mo4O8F10]6- was observed in (NH4)6[Mo4O8F10] and K6[Mo4O8F10] (Aldous & Lightfoot, 2012).

The structure of a new oxofluoride molybdate [H2dab]2.(Mo2O4F6).H2O, synthesized in the MoO3-dab-HFaq-water-ethylenglycol system, is here described. It is built up from [Mo2O4F6]4- dimers, diprotonated (H2dab)2+ cations and water molecules (Fig. 1). The Mo2O4F6 unit is formed by two MoO3F3 octahedra connected by one O–O edge. The MoO3F3 octahedron is strongly distorted due to the presence of two types of Mo–O bonds: one short bond for the terminal O atom and two medium-ranged bonds for the bridging O atom (Table 1). The Mo–F and Mo–O distances are in good agreement with literature values (Mattes et al., 1980; Adil et al., 2007). Isolated water molecules are hydrogen bonded in a tetrahedral geometry with two –NH3 cations and two fluorine atoms (Fig. 2). The inorganic anions and organic cations are connected by intermolecular hydrogen bonds (Fig. 3 and Table 2), creating a two-dimensional network of hydrogen bonds parallel to (-102) between the inorganic anion sheets and organic cation layers.

Related literature top

For background to the physical-chemical properties of hybrid compounds, see: Nakajima et al. (2000). For related structures containing discrete entities, see: Mattes & Lux (1976); Mattes et al. (1980); Chakravorti et al. (1983); Adil et al. (2007); Aldous & Lightfoot (2012).

Experimental top

The starting chemical reactants were molybdenum trioxide (MoO3), 1,4-diaminobutane, aqueous HF (48%), water and ethylenglycol in the molar ratio 1:20:55:278:103. The starting mixture was dissolved under solvothermal conditions at 170°C for 72 h. Single crystals were obtained after the evaporation of the solution at room temperature. Crystals suitable for X-ray diffraction were selected under a polarizing optical microscope.

Refinement top

Non-hydrogen atoms were refined with anisotropic thermal factors. H atoms attached to nitrogen atoms were freely refined but their isotropic atomic displacement parameter was constrained to Uiso(H) = 1.5 Ueq(N). Hydrogen atoms attached to carbon atoms were treated in riding motion, with Uiso(H) = 1.2 Ueq(C). The independent H atom of the water molecule was located in a difference Fourier map and was refined using a SHELXL DFIX option. Small, unresolved disorder affects the organic cation and consequently, the deepest and highest residual peaks in the final difference Fourier map are located close to carbon atoms. All attempts to decrease these densities using split positions failed.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP view (Farrugia, 2012) of the water molecule, [H2dab]2+ cation and (Mo2O4F6)4- anion in [H2dab]2.(Mo2O4F6).H2O. Atomic displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Environment of the water molecule in [H2dab]2.(Mo2O4F6).H2O. O—H···F and N—H···O bonds are shown as dashed lines.
[Figure 3] Fig. 3. [100] view of the crystal packing of [H2dab]2.(Mo2O4F6).H2O.
Bis(butane-1,4-diammonium) di-µ-oxido-bis[trifluoridooxidomolybdate(V)] monohydrate top
Crystal data top
(C4H14N2)2[Mo2O4F6]·H2OF(000) = 568
Mr = 568.24Dx = 1.925 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 79 reflections
a = 8.010 (2) Åθ = 5.2–61.1°
b = 8.788 (2) ŵ = 1.36 mm1
c = 14.294 (4) ÅT = 296 K
β = 103.019 (12)°Platelets, orange
V = 980.3 (4) Å30.15 × 0.13 × 0.03 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
3240 independent reflections
Radiation source: fine-focus sealed tube2690 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 31.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.816, Tmax = 0.960k = 1211
35088 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.2558P]
where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 1.40 e Å3
1 restraintΔρmin = 0.65 e Å3
6 constraints
Crystal data top
(C4H14N2)2[Mo2O4F6]·H2OV = 980.3 (4) Å3
Mr = 568.24Z = 2
Monoclinic, P2/cMo Kα radiation
a = 8.010 (2) ŵ = 1.36 mm1
b = 8.788 (2) ÅT = 296 K
c = 14.294 (4) Å0.15 × 0.13 × 0.03 mm
β = 103.019 (12)°
Data collection top
Bruker APEXII
diffractometer
2690 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
Rint = 0.036
Tmin = 0.816, Tmax = 0.960θmax = 31.6°
35088 measured reflectionsStandard reflections: 0
3240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 1.40 e Å3
S = 1.05Δρmin = 0.65 e Å3
3240 reflectionsAbsolute structure: ?
135 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.38192 (2)0.66084 (2)0.170323 (13)0.02167 (7)
F10.1200 (2)0.6202 (2)0.12852 (14)0.0432 (4)
F20.3822 (3)0.6257 (2)0.02778 (11)0.0444 (4)
F30.36226 (18)0.41536 (17)0.15869 (10)0.0271 (3)
O10.3694 (2)0.6283 (2)0.30531 (12)0.0262 (3)
O20.3558 (3)0.8525 (2)0.15440 (16)0.0408 (5)
N10.6794 (3)0.2936 (3)0.15759 (17)0.0307 (4)
H1D0.781 (5)0.345 (4)0.192 (3)0.046*
H1E0.586 (5)0.322 (4)0.173 (3)0.046*
H1F0.657 (5)0.319 (4)0.097 (3)0.046*
C10.7020 (4)0.1273 (3)0.1650 (2)0.0407 (7)
H1A0.59740.07630.13270.049*
H1B0.72920.09640.23180.049*
C20.8514 (4)0.0847 (4)0.1166 (3)0.0453 (7)
H2A0.82630.12370.05150.054*
H2B0.95590.13290.15150.054*
C30.8797 (4)0.0878 (4)0.1143 (3)0.0460 (7)
H3A0.85660.13310.17200.055*
H3B0.99850.10780.11380.055*
C40.7625 (4)0.1627 (3)0.0250 (2)0.0404 (6)
H4A0.64410.13470.02130.049*
H4B0.79430.12730.03290.049*
N20.7818 (3)0.3310 (2)0.03285 (17)0.0281 (4)
H2D0.894 (5)0.360 (4)0.059 (3)0.042*
H2E0.727 (4)0.377 (4)0.023 (3)0.042*
H2F0.738 (5)0.369 (4)0.081 (3)0.042*
O1W0.00000.4347 (4)0.25000.0432 (7)
H1W0.042 (5)0.496 (4)0.211 (2)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02193 (11)0.02317 (10)0.01799 (10)0.00157 (7)0.00045 (7)0.00148 (7)
F10.0233 (8)0.0492 (10)0.0505 (11)0.0027 (7)0.0060 (7)0.0055 (8)
F20.0602 (11)0.0522 (10)0.0182 (7)0.0035 (9)0.0038 (7)0.0042 (7)
F30.0300 (7)0.0266 (7)0.0230 (7)0.0014 (5)0.0021 (6)0.0032 (5)
O10.0220 (8)0.0346 (9)0.0225 (8)0.0015 (7)0.0060 (6)0.0032 (7)
O20.0453 (12)0.0282 (9)0.0429 (12)0.0050 (8)0.0030 (9)0.0073 (8)
N10.0350 (12)0.0347 (11)0.0232 (10)0.0056 (9)0.0084 (9)0.0011 (9)
C10.0411 (16)0.0312 (13)0.0463 (17)0.0048 (11)0.0023 (13)0.0027 (11)
C20.0421 (16)0.0372 (15)0.056 (2)0.0025 (13)0.0096 (14)0.0067 (13)
C30.0419 (16)0.0393 (16)0.0517 (19)0.0032 (13)0.0001 (14)0.0096 (13)
C40.0449 (16)0.0310 (13)0.0400 (16)0.0029 (11)0.0020 (13)0.0029 (11)
N20.0239 (10)0.0318 (11)0.0273 (11)0.0008 (8)0.0029 (8)0.0024 (8)
O1W0.0311 (15)0.0450 (17)0.0513 (19)0.0000.0043 (13)0.000
Geometric parameters (Å, º) top
Mo1—O11.9754 (18)C1—H1B0.9700
Mo1—O1i1.9642 (18)C2—C31.534 (4)
Mo1—O21.7058 (19)C2—H2A0.9700
Mo1—F12.0786 (17)C2—H2B0.9700
Mo1—F22.0612 (17)C3—C41.551 (4)
Mo1—F32.1666 (15)C3—H3A0.9700
Mo1—Mo1i2.6126 (7)C3—H3B0.9700
O1—Mo1i1.9642 (18)C4—N21.488 (3)
N1—C11.473 (4)C4—H4A0.9700
N1—H1D0.96 (4)C4—H4B0.9700
N1—H1E0.87 (4)N2—H2D0.93 (4)
N1—H1F0.88 (4)N2—H2E0.91 (4)
C1—C21.557 (5)N2—H2F0.91 (4)
C1—H1A0.9700O1W—H1W0.895 (10)
O2—Mo1—O1i104.84 (9)N1—C1—H1A110.2
O2—Mo1—O1103.97 (9)C2—C1—H1A110.2
O1i—Mo1—O194.50 (7)N1—C1—H1B110.2
O2—Mo1—F292.49 (9)C2—C1—H1B110.2
O1i—Mo1—F285.79 (8)H1A—C1—H1B108.5
O1—Mo1—F2162.85 (8)C3—C2—C1112.3 (3)
O2—Mo1—F192.62 (9)C3—C2—H2A109.1
O1i—Mo1—F1160.64 (8)C1—C2—H2A109.1
O1—Mo1—F189.20 (7)C3—C2—H2B109.1
F2—Mo1—F185.17 (8)C1—C2—H2B109.1
O2—Mo1—F3165.47 (8)H2A—C2—H2B107.9
O1i—Mo1—F385.54 (6)C2—C3—C4111.8 (3)
O1—Mo1—F384.97 (6)C2—C3—H3A109.2
F2—Mo1—F377.95 (6)C4—C3—H3A109.2
F1—Mo1—F375.85 (6)C2—C3—H3B109.2
O2—Mo1—Mo1i99.17 (7)C4—C3—H3B109.2
O1i—Mo1—Mo1i48.64 (5)H3A—C3—H3B107.9
O1—Mo1—Mo1i48.28 (5)N2—C4—C3109.0 (2)
F2—Mo1—Mo1i134.43 (6)N2—C4—H4A109.9
F1—Mo1—Mo1i137.42 (6)C3—C4—H4A109.9
F3—Mo1—Mo1i95.32 (4)N2—C4—H4B109.9
Mo1i—O1—Mo183.08 (7)C3—C4—H4B109.9
C1—N1—H1D111 (2)H4A—C4—H4B108.3
C1—N1—H1E112 (2)C4—N2—H2D112 (2)
H1D—N1—H1E114 (3)C4—N2—H2E111 (2)
C1—N1—H1F109 (2)H2D—N2—H2E117 (3)
H1D—N1—H1F111 (3)C4—N2—H2F112 (2)
H1E—N1—H1F100 (3)H2D—N2—H2F96 (3)
N1—C1—C2107.5 (3)H2E—N2—H2F108 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1Wii0.96 (4)1.93 (4)2.889 (3)172 (3)
N1—H1E···F30.87 (4)1.94 (4)2.760 (3)158 (4)
N1—H1F···F2iii0.88 (4)1.80 (4)2.679 (3)178 (4)
N2—H2D···F1iv0.93 (4)1.87 (4)2.779 (3)167 (3)
N2—H2E···F3v0.91 (4)1.94 (4)2.820 (3)161 (3)
N2—H2F···O1vi0.91 (4)2.00 (4)2.865 (3)159 (3)
O1W—H1W···F10.90 (1)1.82 (1)2.711 (3)178 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z; (vi) x+1, y1, z+1/2.
Selected bond lengths (Å) top
Mo1—O11.9754 (18)Mo1—F12.0786 (17)
Mo1—O1i1.9642 (18)Mo1—F22.0612 (17)
Mo1—O21.7058 (19)Mo1—F32.1666 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O1Wii0.96 (4)1.93 (4)2.889 (3)172 (3)
N1—H1E···F30.87 (4)1.94 (4)2.760 (3)158 (4)
N1—H1F···F2iii0.88 (4)1.80 (4)2.679 (3)178 (4)
N2—H2D···F1iv0.93 (4)1.87 (4)2.779 (3)167 (3)
N2—H2E···F3v0.91 (4)1.94 (4)2.820 (3)161 (3)
N2—H2F···O1vi0.91 (4)2.00 (4)2.865 (3)159 (3)
O1W—H1W···F10.895 (10)1.817 (10)2.711 (3)178 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z; (vi) x+1, y1, z+1/2.
references
References top

Adil, K., Marrot, J., Leblanc, M. & Maisonneuve, V. (2007). Acta Cryst. E63, m1511–m1513.

Aldous, D. W. & Lightfoot, P. (2012). J. Fluorine Chem. 144, 108–113.

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Chakravorti, M. C. & Bera, A. K. (1983). Transition Met. Chem. 8, 83–86.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Mattes, R. & Lux, G. (1976). Z. Anorg. Allg. Chem. 424, 173–182.

Mattes, R., Mennemann, K., Jäckel, N., Rieskamp, H. & Brockmeyer, H. J. (1980). J. Less-Common Met. 76, 199–212.

Nakajima, T., Zemava, B. & Tressaud, A. (2000). In Advanced Inorganic Fluorides. Lausanne: Elsevier.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.