[Journal logo]

Volume 68 
Part 12 
Page i91  
December 2012  

Received 15 October 2012
Accepted 5 November 2012
Online 10 November 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](P-P) = 0.001 Å
Disorder in main residue
R = 0.018
wR = 0.042
Data-to-parameter ratio = 23.4
Details
Open access

The layered polyphosphide Ag3.73(4)Zn2.27(4)P16

aTechnische Universität München, Department Chemie, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
Correspondence e-mail: tom.nilges@lrz.tum.de

The silver zinc hexadecaphosphide Ag3.73(4)Zn2.27(4)P16 is the first polyphosphide in the ternary system Ag/Zn/P. It was synthesized from stoichiometric mixtures of Ag, Zn and P in the molar ratio 4:2:16, using AgI as a mineralizing agent in a gas-phase-assisted reaction. Ag3.73(4)Zn2.27(4)P16 crystallizes in the Cu5InP16 structure type. The asymmetric unit contains two Ag/Zn sites with mixed occupancies and four P sites. One of the Ag/Zn sites is located on a twofold rotation axis. The polyanionic [P16]-substructure consists of corrugated six-membered rings that are connected into a layer via the 1-, 2-, 4- and 5-positions of the rings by a bridging P atom in each case. The layers extend parallel to the bc plane and are stacked along the a axis. Both Ag/Zn sites are tetrahedrally coordinated by P atoms.

Related literature

For background to and structures of related polyphosphides, see: Bawohl & Nilges (2009[Bawohl, M. & Nilges, T. (2009). Z. Anorg. Allg. Chem. 635, 667-673.]); Dommann et al. (1989[Dommann, A., Marsh, R. E. & Hulliger, F. (1989). J. Less-Common Met. 152, 1-6.]); Edmunds & Qurashi (1951[Edmunds, I. G. & Qurashi, M. M. (1951). Acta Cryst. 4, 417-425.]); Lange et al. (2008[Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654-5657.]); Möller & Jeitschko (1981[Möller, M. H. & Jeitschko, W. (1981). Inorg. Chem. 20, 828-833.]); Olofsson (1965[Olofsson, O. (1965). Acta Chem. Scand. 19, 229-241.]); Zanin et al. (2003[Zanin, I. E., Aleinikova, K. B. & Antipin, M. Yu. (2003). Kristallografiya, 48, 232-237.]). For background to the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Experimental

Crystal data
  • Ag3.73Zn2.27P16

  • Mr = 1046.3

  • Monoclinic, C 2/c

  • a = 11.492 (1) Å

  • b = 9.9604 (8) Å

  • c = 7.7106 (9) Å

  • [beta] = 109.585 (9)°

  • V = 831.5 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 9.05 mm-1

  • T = 293 K

  • 0.02 × 0.02 × 0.02 mm

Data collection
  • IPDS Stoe 2T diffractometer

  • Absorption correction: numerical (X-AREA; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.730, Tmax = 0.771

  • 4398 measured reflections

  • 1265 independent reflections

  • 1135 reflections with I > 3[sigma](I)

  • Rint = 0.015

Refinement
  • R[F2 > 2[sigma](F2)] = 0.018

  • wR(F2) = 0.042

  • S = 1.39

  • 1265 reflections

  • 54 parameters

  • [Delta][rho]max = 0.56 e Å-3

  • [Delta][rho]min = -0.66 e Å-3

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petricek et al., 2006[Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2694 ).


Acknowledgements

The authors thank the German Science Foundation (DFG) for the kind support of project NI1095/1-2.

References

Bawohl, M. & Nilges, T. (2009). Z. Anorg. Allg. Chem. 635, 667-673.  [CrossRef] [ChemPort]
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.  [CrossRef] [details]
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Dommann, A., Marsh, R. E. & Hulliger, F. (1989). J. Less-Common Met. 152, 1-6.  [CrossRef] [ChemPort]
Edmunds, I. G. & Qurashi, M. M. (1951). Acta Cryst. 4, 417-425.  [CrossRef] [ChemPort] [details]
Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654-5657.  [ISI] [CrossRef] [ChemPort]
Möller, M. H. & Jeitschko, W. (1981). Inorg. Chem. 20, 828-833.
Olofsson, O. (1965). Acta Chem. Scand. 19, 229-241.  [CrossRef] [ChemPort]
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.  [ISI] [CrossRef] [ChemPort] [details]
Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Zanin, I. E., Aleinikova, K. B. & Antipin, M. Yu. (2003). Kristallografiya, 48, 232-237.


Acta Cryst (2012). E68, i91  [ doi:10.1107/S1600536812045667 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.