[Journal logo]

Volume 68 
Part 12 
Pages m1497-m1498  
December 2012  

Received 30 October 2012
Accepted 10 November 2012
Online 17 November 2012

Key indicators
Single-crystal X-ray study
T = 273 K
Mean [sigma](C-C) = 0.009 Å
R = 0.075
wR = 0.154
Data-to-parameter ratio = 10.9
Details
Open access

Dipyridinium diaquabis(pyrazole-3,5-dicarboxylato-[kappa]2N,O)cuprate(II) dihydrate

aState Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bUniversité Européenne de Bretagne, Université de Bretagne Occidentale, CS 93837, 29238 Brest Cedex 3, France
Correspondence e-mail: siyoutao@hotmail.com

In the mononuclear title salt, (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O, the CuII ion is located on an inversion centre and is coordinated by two chelating pyrazole-3,5-dicarboxylate anions and two water molecules, forming a Jahn-Teller-distorted CuN2O4 octahedron. O-H...O and N-H...O hydrogen bonds are formed between water molecules, complex anions and the pyridine counter-cations, leading to the formation of layers parallel to (100). The layers are held together by weak C-H...O hydrogen bonds.

Related literature

For more information on ligands derived from pyrazole-3,5-dicarboxylic acid, see: King et al. (2004[King, P., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852-861.]). For the bond-valence method, see: Brown (2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)2[Cu(C5H2N2O4)2(H2O)2]·2H2O

  • Mr = 603.99

  • Monoclinic, P 21 /c

  • a = 9.3531 (4) Å

  • b = 7.3521 (1) Å

  • c = 17.9903 (7) Å

  • [beta] = 95.600 (2)°

  • V = 1231.20 (7) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.96 mm-1

  • T = 273 K

  • 0.34 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.735, Tmax = 0.944

  • 3386 measured reflections

  • 2106 independent reflections

  • 1802 reflections with I > 2[sigma](I)

  • Rint = 0.038

Refinement
  • R[F2 > 2[sigma](F2)] = 0.075

  • wR(F2) = 0.154

  • S = 1.26

  • 2106 reflections

  • 193 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.50 e Å-3

  • [Delta][rho]min = -0.41 e Å-3

Table 1
Selected geometric parameters (Å, °)

Cu1-O4 1.959 (4)
Cu1-N2 2.006 (4)
Cu1-O5 2.539 (5)
O4-Cu1-N2 81.99 (16)
O4-Cu1-O5 90.92 (17)
N2-Cu1-O5 86.97 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...O6i 0.86 1.99 2.783 (6) 154
O5-H3A...O3ii 0.81 (4) 1.95 (4) 2.764 (6) 175 (8)
O5-H3B...O2iii 0.82 (2) 2.04 (3) 2.845 (6) 170 (7)
O6-H4A...O4 0.82 (5) 1.96 (5) 2.735 (7) 159 (7)
O6-H4B...O1ii 0.82 (6) 2.01 (6) 2.801 (6) 162 (7)
N3-H5...O1iv 0.87 (6) 1.81 (6) 2.665 (7) 171 (6)
C6-H6...O5v 0.93 2.55 3.247 (9) 132
C8-H8...O3vi 0.93 2.36 3.211 (8) 151
C10-H10...O2vii 0.93 2.58 3.231 (8) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x+1, y, z; (vi) x, y-1, z; (vii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1998[Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1998[Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2698 ).


Acknowledgements

The author thanks the Centre Nationale de la Recherche Scientique (CNRS) for financial support.

References

Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
King, P., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852-861.  [CSD] [CrossRef]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Siemens (1998). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, m1497-m1498   [ doi:10.1107/S1600536812046508 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.