metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-{2,6-Bis[(di-tert-butyl­phosphan­yl)meth­yl]cyclo­hexyl-κ3P,C1,P′}chloridopalladium(II)

aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
*Correspondence e-mail: ola.wendt@chem.lu.se

(Received 8 November 2012; accepted 15 November 2012; online 24 November 2012)

The PdII atom in the title compound, [Pd(C24H49P2)Cl], has a distorted square-planar CClP2 coordination geometry with the P,C,P′-tridentate ligand forming two five-membered metallacycles. The cyclo­hexane ring is aligned with the PdII coordination plane due to C—H activation in an equatorial position, giving a tri-equatorial conformation of the cyclo­hexyl ring.

Related literature

C(sp3)—H activated (PCP)-complexes with catalytic performance in C—C coupling reactions were reported by Ohff et al. (1997[Ohff, M., Ohff, A., van der Boom, M. E. & Milstein, D. (1997). J. Am. Chem. Soc. 119, 11687-11688.]); Sjövall et al. (2002[Sjövall, S., Wendt, O. F. & Andersson, C. (2002). J. Chem. Soc. Dalton Trans. pp. 1396-1400.]); Nilsson & Wendt (2005[Nilsson, P. & Wendt, O. F. (2005). J. Organomet. Chem. 690, 4197-4202.]); Olsson & Wendt (2009[Olsson, D. & Wendt, O. F. (2009). J. Organomet. Chem. 694, 3112-3115.]). Metal complexes with (PCP)-type ligands containing an aliphatic backbone have been reported for Rh (Kuznetsov et al., 2006[Kuznetsov, V. F., Lough, A. J. & Gusev, D. G. (2006). Inorg. Chim. Acta, 359, 2806-2811.]), Ni (Castonguay et al., 2006[Castonguay, A., Sui-Seng, C., Zargarian, D. & Beauchamp, A. L. (2006). Organometallics, 25, 602-608.]; Pandarus & Zargarian, 2007[Pandarus, V. & Zargarian, D. (2007). Chem. Commun. pp. 978-980.]), Pt (Olsson et al. 2007a[Olsson, D., Arunachalampillai, A. & Wendt, O. F. (2007a). Dalton Trans. pp. 5427-5433.]), Ir (Arunachalampillai et al., 2009[Arunachalampillai, A., Olsson, D. & Wendt, O. F. (2009). Dalton Trans. pp. 8626-8630.]; Jonasson et al. 2011[Jonasson, K. J., Ahlsten, N. & Wendt, O. F. (2011). Inorg. Chim. Acta, 379, 76-80.]). The crystal structures of the bromide and iodide analogues of the title compound were determined by Sjövall et al. (2002[Sjövall, S., Wendt, O. F. & Andersson, C. (2002). J. Chem. Soc. Dalton Trans. pp. 1396-1400.]) and Olsson et al. (2007b[Olsson, D., Janse van Rensburg, J. M. & Wendt, O. F. (2007b). Acta Cryst. E63, m1969.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C24H49P2)Cl]

  • Mr = 541.42

  • Monoclinic, P 21 /n

  • a = 11.9467 (2) Å

  • b = 14.6159 (2) Å

  • c = 15.5190 (3) Å

  • β = 100.339 (2)°

  • V = 2665.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction XCalibur 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.941, Tmax = 1.000

  • 26794 measured reflections

  • 9297 independent reflections

  • 6699 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 0.96

  • 9297 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2011[CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. URL: www.CrystalMaker.com.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In this study we report the crystal structure of {cis-1,3-bis[(di-tert-butylphosphanyl)methyl]cyclohexane}palladium(II) chloride, [PdCl(C24H49P2)], (I).

Compound (I) belongs to a family of C(sp3)—H activated (PCP)-complexes, showing interesting catalytic performance in C—C coupling reactions (Ohff et al., 1997; Sjövall et al., 2002; Nilsson & Wendt, 2005; Olsson & Wendt, 2009). Structural data for the corresponding bromide and iodide analogues have been reported previously (Sjövall et al., 2002; Olsson et al., 2007b).

Aromatic backbones are by far the most commonly occurring for palladium (PCP)-complexes, but complexes based on an aliphatic backbone are receiving increasing attention. Aliphatic (PCP)-type ligands that are coordinated to transition metals have been published recently for metals such as rhodium (Kuznetsov et al., 2006), nickel (Castonguay et al., 2006; Pandarus & Zargarian, 2007), platinum (Olsson et al. 2007a) and iridium (Arunachalampillai et al., 2009; Jonasson et al. 2011).

In the structure of (I) the PdII atom exhibits a pseudo-square-planar coordination geometry (Fig. 1). Comparison to the analogous iodido and bromido complexes indicates the expected Pd—halogen bond lengths decrease. The Pd—P bond lengths are around 2.3 Å in all complexes with a trans orientation of the P atoms; in (I) the P1—Pd1—P2 angle is 166.495 (15) ° . The (PCP)-tridentate ligand and the PdII atom form two five-membered metalla rings. As is usually observed in these systems, the bis-chelating system displays two acute P—Pd—C1 angles of around 83–84°. Bond lengths are Pd1—Cl1, 2.4405 (4) Å, Pd1—P1, 2.3233 (4) Å, Pd1—P2, 2.3226 (4) Å and Pd1—C1, 2.0808 (16) Å.

The cyclohexane ring is aligned with the palladium coordination plane forming the usual tri-equatorial conformation (Fig. 1).

Related literature top

C(sp3)—H activated (PCP)-complexes with catalytic performance in C—C coupling reactions were reported by Ohff et al. (1997); Sjövall et al. (2002); Nilsson & Wendt (2005); Olsson & Wendt (2009). Metal complexes with (PCP)-type ligands containing an aliphatic backbone have been reported for Rh (Kuznetsov et al., 2006), Ni (Castonguay et al., 2006; Pandarus & Zargarian, 2007), Pt (Olsson et al. 2007a), Ir (Arunachalampillai et al., 2009; Jonasson et al. 2011). The crystal structures of the bromide and iodide analogues of the title compound were determined by Sjövall et al. (2002) and Olsson et al. (2007b).

Experimental top

All procedures were performed under vacuum or nitrogen. The (PCP)H ligand was prepared according to the published procedure (Sjövall et al., 2002). A solution of the ligand (0.536 g, 1.337 mmol) in 20 ml THF was mixed with a solution of PdCl2(PhCN)2 (0.500 g, 1.304 mmol) in 30 ml THF in a high-pressure glass vessel and the mixture was heated at 353 K for 8 h. Evaporation of all volatiles gave a crude, light yellow product in almost quantitative yield. Recrystallization from hexane gave 0.483 g (69%) of crystals suitable for X-ray crystallographic analysis. 1H-NMR (benzene-d6): δ 2.15–0.80 (m region, 13H, CH & CH2), 1.37 (m, 36H, coalesced virtual triplets). 31P{1H} NMR (benzene-d6): δ 70.6 (s).

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å and Uiso(H) = 1.2Ueq - 1.5Ueq. The highest difference peak in the Fourier map is located 1.25 Å from H26A and the lowest is located 0.60 Å from P2.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels (methyl groups labels omitted) and 40% probability displacement ellipsoids. H-atoms were omitted for clarity.
cis-{2,6-Bis[(di-tert- butylphosphanyl)methyl]cyclohexyl- κ3P,C1,P'}chloridopalladium(II) top
Crystal data top
[Pd(C24H49P2)Cl]F(000) = 1144
Mr = 541.42Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14595 reflections
a = 11.9467 (2) Åθ = 2.2–33.0°
b = 14.6159 (2) ŵ = 0.93 mm1
c = 15.5190 (3) ÅT = 293 K
β = 100.339 (2)°Prism, colourless
V = 2665.80 (8) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction XCalibur 3
diffractometer
9297 independent reflections
Radiation source: Enhance (Mo) X-ray Source6699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1829 pixels mm-1θmax = 33.0°, θmin = 2.2°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2022
Tmin = 0.941, Tmax = 1.000l = 1723
26794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
9297 reflections(Δ/σ)max = 0.004
253 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Pd(C24H49P2)Cl]V = 2665.80 (8) Å3
Mr = 541.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9467 (2) ŵ = 0.93 mm1
b = 14.6159 (2) ÅT = 293 K
c = 15.5190 (3) Å0.15 × 0.10 × 0.05 mm
β = 100.339 (2)°
Data collection top
Oxford Diffraction XCalibur 3
diffractometer
9297 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
6699 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.024
26794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 0.96Δρmax = 1.28 e Å3
9297 reflectionsΔρmin = 0.56 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.395006 (10)0.557045 (8)0.252150 (7)0.01343 (4)
Cl10.36623 (3)0.67441 (3)0.35789 (3)0.02067 (8)
P10.20462 (4)0.53783 (3)0.18983 (3)0.01455 (8)
P20.59247 (3)0.55763 (3)0.28541 (3)0.01541 (8)
C10.41983 (14)0.46752 (12)0.15303 (11)0.0188 (3)
H10.42260.50650.10210.023*
C20.32136 (14)0.40129 (11)0.12327 (11)0.0197 (3)
H20.31760.35970.17220.024*
C30.33987 (15)0.34263 (12)0.04548 (10)0.0210 (3)
H3A0.27940.29770.03320.025*
H3B0.33560.38130.00580.025*
C40.45339 (16)0.29375 (12)0.06192 (11)0.0268 (4)
H4A0.46420.26210.00910.032*
H4B0.45390.24850.10770.032*
C50.55085 (15)0.36146 (12)0.08926 (10)0.0215 (3)
H5A0.55510.40290.04110.026*
H5B0.62220.32830.10250.026*
C60.53358 (15)0.41664 (12)0.16956 (11)0.0211 (3)
H60.53130.37310.21720.025*
C70.20875 (14)0.45253 (11)0.10369 (11)0.0196 (3)
H7A0.14610.40990.10160.024*
H7B0.20110.48260.04720.024*
C80.63117 (14)0.48257 (12)0.20024 (11)0.0204 (3)
H8A0.64600.51900.15130.024*
H8B0.69960.44860.22360.024*
C110.11083 (13)0.48541 (11)0.26177 (10)0.0172 (3)
C120.16985 (16)0.39565 (12)0.29573 (12)0.0255 (4)
H12A0.24580.40850.32540.038*
H12B0.17260.35540.24730.038*
H12C0.12800.36700.33570.038*
C130.00951 (14)0.46389 (13)0.21394 (12)0.0252 (4)
H13A0.04700.51970.19260.038*
H13B0.05140.43470.25360.038*
H13C0.00570.42380.16560.038*
C140.10502 (15)0.54682 (12)0.34093 (11)0.0242 (4)
H14A0.18070.56030.37090.036*
H14B0.06400.51580.38010.036*
H14C0.06660.60280.32140.036*
C150.13876 (14)0.64162 (11)0.12899 (10)0.0195 (3)
C160.03613 (16)0.62126 (13)0.05651 (12)0.0290 (4)
H16A0.05770.57760.01620.044*
H16B0.01140.67680.02580.044*
H16C0.02480.59670.08220.044*
C170.10405 (16)0.71136 (12)0.19252 (12)0.0261 (4)
H17A0.16780.72410.23800.039*
H17B0.04280.68700.21790.039*
H17C0.07970.76680.16160.039*
C180.23380 (16)0.68321 (12)0.08639 (12)0.0271 (4)
H18A0.25610.64000.04610.041*
H18B0.29810.69750.13100.041*
H18C0.20650.73800.05560.041*
C210.66048 (14)0.50577 (12)0.39318 (11)0.0200 (3)
C220.61384 (17)0.40707 (12)0.39274 (12)0.0286 (4)
H22A0.63670.37320.34580.043*
H22B0.53230.40870.38460.043*
H22C0.64360.37800.44750.043*
C230.79068 (15)0.50157 (16)0.40666 (12)0.0321 (4)
H23A0.81330.46930.35870.048*
H23B0.81940.47030.46050.048*
H23C0.82090.56260.40920.048*
C240.62365 (15)0.55715 (12)0.46951 (11)0.0235 (3)
H24A0.54210.56010.46040.035*
H24B0.65430.61800.47260.035*
H24C0.65150.52550.52330.035*
C250.65819 (14)0.67117 (11)0.26587 (11)0.0199 (3)
C260.77759 (15)0.66373 (13)0.24310 (13)0.0304 (4)
H26A0.77520.62420.19340.046*
H26B0.82900.63900.29220.046*
H26C0.80320.72340.22940.046*
C270.66061 (16)0.73466 (12)0.34422 (12)0.0268 (4)
H27A0.58560.73910.35800.040*
H27B0.68590.79430.33020.040*
H27C0.71190.71050.39380.040*
C280.57787 (16)0.71338 (13)0.18684 (12)0.0276 (4)
H28A0.50270.71870.20010.041*
H28B0.57580.67480.13650.041*
H28C0.60520.77290.17470.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01082 (6)0.01346 (6)0.01586 (6)0.00033 (5)0.00199 (4)0.00143 (5)
Cl10.01600 (19)0.0219 (2)0.02365 (19)0.00088 (15)0.00219 (15)0.00764 (16)
P10.01157 (19)0.01407 (19)0.01712 (19)0.00003 (14)0.00017 (15)0.00109 (14)
P20.01061 (18)0.01640 (19)0.01917 (19)0.00028 (16)0.00255 (15)0.00093 (16)
C10.0188 (8)0.0192 (8)0.0188 (8)0.0020 (6)0.0049 (6)0.0017 (6)
C20.0209 (9)0.0182 (8)0.0196 (8)0.0019 (6)0.0025 (7)0.0014 (6)
C30.0259 (9)0.0197 (8)0.0175 (8)0.0008 (7)0.0042 (7)0.0034 (6)
C40.0362 (11)0.0236 (9)0.0209 (8)0.0085 (8)0.0056 (8)0.0020 (7)
C50.0229 (9)0.0228 (9)0.0197 (8)0.0079 (7)0.0062 (7)0.0017 (7)
C60.0217 (9)0.0217 (8)0.0195 (8)0.0049 (7)0.0022 (7)0.0007 (6)
C70.0163 (8)0.0215 (9)0.0203 (8)0.0024 (6)0.0011 (6)0.0014 (6)
C80.0156 (8)0.0221 (9)0.0243 (8)0.0041 (6)0.0058 (7)0.0012 (7)
C110.0130 (7)0.0148 (8)0.0246 (8)0.0013 (6)0.0057 (6)0.0009 (6)
C120.0247 (9)0.0215 (9)0.0319 (10)0.0015 (7)0.0097 (8)0.0040 (7)
C130.0167 (9)0.0281 (10)0.0312 (9)0.0050 (7)0.0051 (7)0.0033 (7)
C140.0229 (9)0.0274 (10)0.0234 (8)0.0038 (7)0.0074 (7)0.0028 (7)
C150.0183 (8)0.0168 (8)0.0213 (8)0.0009 (6)0.0021 (6)0.0009 (6)
C160.0272 (10)0.0241 (9)0.0302 (9)0.0025 (8)0.0097 (8)0.0021 (8)
C170.0263 (10)0.0181 (9)0.0315 (10)0.0055 (7)0.0014 (8)0.0006 (7)
C180.0288 (10)0.0225 (9)0.0300 (9)0.0003 (8)0.0052 (8)0.0073 (7)
C210.0148 (8)0.0236 (9)0.0208 (8)0.0022 (7)0.0012 (6)0.0007 (7)
C220.0385 (11)0.0218 (9)0.0228 (9)0.0025 (8)0.0020 (8)0.0023 (7)
C230.0180 (9)0.0516 (13)0.0254 (9)0.0069 (9)0.0000 (7)0.0019 (9)
C240.0240 (9)0.0258 (9)0.0209 (8)0.0009 (7)0.0044 (7)0.0000 (7)
C250.0145 (8)0.0199 (8)0.0258 (8)0.0019 (6)0.0047 (6)0.0003 (7)
C260.0191 (9)0.0281 (10)0.0462 (11)0.0043 (7)0.0120 (8)0.0042 (9)
C270.0234 (9)0.0204 (9)0.0363 (10)0.0062 (7)0.0044 (8)0.0022 (8)
C280.0265 (10)0.0236 (9)0.0324 (10)0.0019 (7)0.0046 (8)0.0078 (8)
Geometric parameters (Å, º) top
Pd1—C12.0808 (16)C14—H14A0.9600
Pd1—P22.3226 (4)C14—H14B0.9600
Pd1—P12.3233 (4)C14—H14C0.9600
Pd1—Cl12.4405 (4)C15—C171.526 (2)
P1—C71.8352 (17)C15—C161.537 (2)
P1—C111.8810 (16)C15—C181.538 (2)
P1—C151.8828 (17)C16—H16A0.9600
P2—C81.8394 (17)C16—H16B0.9600
P2—C211.8827 (17)C16—H16C0.9600
P2—C251.8835 (17)C17—H17A0.9600
C1—C21.530 (2)C17—H17B0.9600
C1—C61.530 (2)C17—H17C0.9600
C1—H10.9800C18—H18A0.9600
C2—C71.522 (2)C18—H18B0.9600
C2—C31.529 (2)C18—H18C0.9600
C2—H20.9800C21—C241.532 (2)
C3—C41.513 (2)C21—C231.533 (2)
C3—H3A0.9700C21—C221.546 (2)
C3—H3B0.9700C22—H22A0.9600
C4—C51.529 (3)C22—H22B0.9600
C4—H4A0.9700C22—H22C0.9600
C4—H4B0.9700C23—H23A0.9600
C5—C61.529 (2)C23—H23B0.9600
C5—H5A0.9700C23—H23C0.9600
C5—H5B0.9700C24—H24A0.9600
C6—C81.522 (2)C24—H24B0.9600
C6—H60.9800C24—H24C0.9600
C7—H7A0.9700C25—C271.526 (2)
C7—H7B0.9700C25—C261.534 (2)
C8—H8A0.9700C25—C281.544 (2)
C8—H8B0.9700C26—H26A0.9600
C11—C131.528 (2)C26—H26B0.9600
C11—C141.533 (2)C26—H26C0.9600
C11—C121.537 (2)C27—H27A0.9600
C12—H12A0.9600C27—H27B0.9600
C12—H12B0.9600C27—H27C0.9600
C12—H12C0.9600C28—H28A0.9600
C13—H13A0.9600C28—H28B0.9600
C13—H13B0.9600C28—H28C0.9600
C13—H13C0.9600
C1—Pd1—P283.84 (5)C11—C13—H13C109.5
C1—Pd1—P182.82 (5)H13A—C13—H13C109.5
P2—Pd1—P1166.495 (15)H13B—C13—H13C109.5
C1—Pd1—Cl1174.27 (5)C11—C14—H14A109.5
P2—Pd1—Cl196.201 (14)C11—C14—H14B109.5
P1—Pd1—Cl196.853 (14)H14A—C14—H14B109.5
C7—P1—C11104.62 (7)C11—C14—H14C109.5
C7—P1—C15104.21 (8)H14A—C14—H14C109.5
C11—P1—C15112.70 (7)H14B—C14—H14C109.5
C7—P1—Pd1103.48 (6)C17—C15—C16109.18 (14)
C11—P1—Pd1116.43 (5)C17—C15—C18108.71 (14)
C15—P1—Pd1113.65 (5)C16—C15—C18108.39 (14)
C8—P2—C21105.91 (8)C17—C15—P1110.59 (11)
C8—P2—C25104.13 (8)C16—C15—P1114.69 (12)
C21—P2—C25111.83 (8)C18—C15—P1105.05 (11)
C8—P2—Pd1102.38 (6)C15—C16—H16A109.5
C21—P2—Pd1117.07 (5)C15—C16—H16B109.5
C25—P2—Pd1113.80 (5)H16A—C16—H16B109.5
C2—C1—C6110.78 (14)C15—C16—H16C109.5
C2—C1—Pd1114.66 (11)H16A—C16—H16C109.5
C6—C1—Pd1114.96 (11)H16B—C16—H16C109.5
C2—C1—H1105.1C15—C17—H17A109.5
C6—C1—H1105.1C15—C17—H17B109.5
Pd1—C1—H1105.1H17A—C17—H17B109.5
C7—C2—C3111.48 (13)C15—C17—H17C109.5
C7—C2—C1110.69 (13)H17A—C17—H17C109.5
C3—C2—C1112.39 (14)H17B—C17—H17C109.5
C7—C2—H2107.3C15—C18—H18A109.5
C3—C2—H2107.3C15—C18—H18B109.5
C1—C2—H2107.3H18A—C18—H18B109.5
C4—C3—C2112.57 (14)C15—C18—H18C109.5
C4—C3—H3A109.1H18A—C18—H18C109.5
C2—C3—H3A109.1H18B—C18—H18C109.5
C4—C3—H3B109.1C24—C21—C23109.83 (14)
C2—C3—H3B109.1C24—C21—C22107.91 (14)
H3A—C3—H3B107.8C23—C21—C22108.62 (15)
C3—C4—C5110.85 (14)C24—C21—P2110.58 (11)
C3—C4—H4A109.5C23—C21—P2113.75 (12)
C5—C4—H4A109.5C22—C21—P2105.90 (11)
C3—C4—H4B109.5C21—C22—H22A109.5
C5—C4—H4B109.5C21—C22—H22B109.5
H4A—C4—H4B108.1H22A—C22—H22B109.5
C4—C5—C6111.11 (14)C21—C22—H22C109.5
C4—C5—H5A109.4H22A—C22—H22C109.5
C6—C5—H5A109.4H22B—C22—H22C109.5
C4—C5—H5B109.4C21—C23—H23A109.5
C6—C5—H5B109.4C21—C23—H23B109.5
H5A—C5—H5B108.0H23A—C23—H23B109.5
C8—C6—C5112.41 (14)C21—C23—H23C109.5
C8—C6—C1110.62 (14)H23A—C23—H23C109.5
C5—C6—C1111.44 (14)H23B—C23—H23C109.5
C8—C6—H6107.4C21—C24—H24A109.5
C5—C6—H6107.4C21—C24—H24B109.5
C1—C6—H6107.4H24A—C24—H24B109.5
C2—C7—P1109.10 (11)C21—C24—H24C109.5
C2—C7—H7A109.9H24A—C24—H24C109.5
P1—C7—H7A109.9H24B—C24—H24C109.5
C2—C7—H7B109.9C27—C25—C26109.96 (15)
P1—C7—H7B109.9C27—C25—C28108.08 (14)
H7A—C7—H7B108.3C26—C25—C28108.45 (14)
C6—C8—P2108.99 (11)C27—C25—P2110.88 (12)
C6—C8—H8A109.9C26—C25—P2113.98 (12)
P2—C8—H8A109.9C28—C25—P2105.21 (11)
C6—C8—H8B109.9C25—C26—H26A109.5
P2—C8—H8B109.9C25—C26—H26B109.5
H8A—C8—H8B108.3H26A—C26—H26B109.5
C13—C11—C14109.63 (14)C25—C26—H26C109.5
C13—C11—C12108.94 (14)H26A—C26—H26C109.5
C14—C11—C12107.99 (14)H26B—C26—H26C109.5
C13—C11—P1113.85 (12)C25—C27—H27A109.5
C14—C11—P1110.77 (11)C25—C27—H27B109.5
C12—C11—P1105.41 (11)H27A—C27—H27B109.5
C11—C12—H12A109.5C25—C27—H27C109.5
C11—C12—H12B109.5H27A—C27—H27C109.5
H12A—C12—H12B109.5H27B—C27—H27C109.5
C11—C12—H12C109.5C25—C28—H28A109.5
H12A—C12—H12C109.5C25—C28—H28B109.5
H12B—C12—H12C109.5H28A—C28—H28B109.5
C11—C13—H13A109.5C25—C28—H28C109.5
C11—C13—H13B109.5H28A—C28—H28C109.5
H13A—C13—H13B109.5H28B—C28—H28C109.5

Experimental details

Crystal data
Chemical formula[Pd(C24H49P2)Cl]
Mr541.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.9467 (2), 14.6159 (2), 15.5190 (3)
β (°) 100.339 (2)
V3)2665.80 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction XCalibur 3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.941, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26794, 9297, 6699
Rint0.024
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 0.96
No. of reflections9297
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.56

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2011).

 

Acknowledgements

Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged. We also thank the Crafoord foundation for a post-doctoral grant to JMJvR.

References

First citationArunachalampillai, A., Olsson, D. & Wendt, O. F. (2009). Dalton Trans. pp. 8626–8630.  Web of Science CSD CrossRef Google Scholar
First citationCastonguay, A., Sui-Seng, C., Zargarian, D. & Beauchamp, A. L. (2006). Organometallics, 25, 602–608.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. URL: www.CrystalMaker.com.  Google Scholar
First citationJonasson, K. J., Ahlsten, N. & Wendt, O. F. (2011). Inorg. Chim. Acta, 379, 76–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuznetsov, V. F., Lough, A. J. & Gusev, D. G. (2006). Inorg. Chim. Acta, 359, 2806–2811.  Web of Science CSD CrossRef CAS Google Scholar
First citationNilsson, P. & Wendt, O. F. (2005). J. Organomet. Chem. 690, 4197–4202.  Web of Science CrossRef CAS Google Scholar
First citationOhff, M., Ohff, A., van der Boom, M. E. & Milstein, D. (1997). J. Am. Chem. Soc. 119, 11687–11688.  CSD CrossRef CAS Web of Science Google Scholar
First citationOlsson, D., Arunachalampillai, A. & Wendt, O. F. (2007a). Dalton Trans. pp. 5427–5433.  Web of Science CSD CrossRef Google Scholar
First citationOlsson, D., Janse van Rensburg, J. M. & Wendt, O. F. (2007b). Acta Cryst. E63, m1969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlsson, D. & Wendt, O. F. (2009). J. Organomet. Chem. 694, 3112–3115.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPandarus, V. & Zargarian, D. (2007). Chem. Commun. pp. 978–980.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSjövall, S., Wendt, O. F. & Andersson, C. (2002). J. Chem. Soc. Dalton Trans. pp. 1396–1400.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds