supplementary materials


xu5633 scheme

Acta Cryst. (2012). E68, m1527    [ doi:10.1107/S1600536812047605 ]

[5-(Pyridin-2-yl)-1H-tetrazole-[kappa]2N4,N5]bis(triphenylphosphane-[kappa]P)copper(I) tetrafluoridoborate

L. Lu, P. Yang, B. Li, L.-F. Shi and H.-R. Cao

Abstract top

In the title CuI compound, [Cu(C6H5N5)(C18H15P)2]BF4, the CuI cation is N,N'-chelated by a 5-(pyridin-2-yl)-1H-tetrazole ligand and coordinated by two triphenylphosphane ligands in a distorted tetrahedral geometry. The tetrazole and pyridine rings are essentially coplanar [dihedral angle = 4.1 (3)°]. The tetrafluoridoborate anion links to the complex cation via an N-H...F hydrogen bond.

Comment top

Many copper(I) complexes have been utilized in solar energy conversion, biological probing, and organic light-emitting devices (Jia et al., 2005; Tsuboyama et al., 2007; Zhang et al., 2004). Therefore, it is pressing to explore new Cu(I) complexes served as luminescent materials. In this article, we have successfully synthesized a novel mixed ligand Cu(I) complex.

Scheme 1 and Figure 1 display the four-coordinated environment of complex [Cu(PPh3)2(L)]BF4, the coordination geometry at the Cu atom is a distorted tetrahedron. The distances of N1 and N2 to Cu1 are 2.185 (4), and 2.103 (4) Å, respectively, and the Cu—P bond lengths are 2.2575 (13) and 2.2538 (14) Å. The counter tetrafluoroboronate ion links with the complex cation via N—H···F hydrogen bonds (Table 1).

Related literature top

For applications of CuI complexes, see: Jia et al. (2005); Tsuboyama et al. (2007); Zhang et al. (2004). For the synthesis, see: Kuang et al. (2002); Demko & Sharpless (2001).

Experimental top

The 5-(2-Pyridyl)tetrazole ligand was synthesized according to the literature method (Demko & Sharpless, 2001) with some minor modification. The specific synthetic procedure is as follows: (i) To a 100 ml round-bottomed flask was added 2-cyanopyridine (0.52 g, 5 mmol), sodium azide (0.36 g, 5.5 mmol), zinc bromide (1.15 g, 5 mmol), and water (30 ml). The reaction mixture was refluxed for 5 h, cooled to room temperature. Then the mixture was basified by addition of 2.5 equiv of NaOH, filtered, acidified to pH = 1, and filtered, and the solid was washed with water then 5-(2-Pyridyl)tetrazole (0.58 g, 78%) was obtained.

[Cu(PPh3)2(L)]BF4 was synthesized according to the following procedure (Kuang et al., 2002): To a 100 ml flask was added [Cu(CH3CN)4]BF4 0.314 g (1 mmol), triphenylphosphane 0.522 g(2 mmol) and 10 ml dichioromethane, kept stirring for 1 h. Then 0.148 g 5-(2-Pyridyl)tetrazole was added and stirred for another hour. After the evaporation of solvent, the product was obtained as a light green powder. Single crystals of complex [Cu(PPh3)2(L)]BF4 suitable for X-ray diffraction studies were grown from slow evaporation of a CH2Cl2 solution.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of [Cu(PPh3)2(L)]BF4, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).
[5-(Pyridin-2-yl)-1H-tetrazole- κ2N4,N5]bis(triphenylphosphane-κP)copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C6H5N5)(C18H15P)2]BF4Z = 2
Mr = 822.05F(000) = 844
Triclinic, P1Dx = 1.367 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6640 (19) ÅCell parameters from 6566 reflections
b = 13.052 (3) Åθ = 3.0–26.0°
c = 15.947 (3) ŵ = 0.68 mm1
α = 88.66 (3)°T = 293 K
β = 84.80 (3)°Block, light green
γ = 85.72 (3)°0.29 × 0.17 × 0.16 mm
V = 1997.3 (7) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8838 independent reflections
Radiation source: fine-focus sealed tube4984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.908, Tmax = 0.947k = 1616
19069 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0409P)2 + 3.0232P]
where P = (Fo2 + 2Fc2)/3
8838 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Cu(C6H5N5)(C18H15P)2]BF4γ = 85.72 (3)°
Mr = 822.05V = 1997.3 (7) Å3
Triclinic, P1Z = 2
a = 9.6640 (19) ÅMo Kα radiation
b = 13.052 (3) ŵ = 0.68 mm1
c = 15.947 (3) ÅT = 293 K
α = 88.66 (3)°0.29 × 0.17 × 0.16 mm
β = 84.80 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8838 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4984 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.947Rint = 0.036
19069 measured reflectionsθmax = 27.4°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.166Δρmax = 0.70 e Å3
S = 1.14Δρmin = 1.12 e Å3
8838 reflectionsAbsolute structure: ?
496 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.58602 (5)0.22693 (4)0.77067 (3)0.04916 (17)
P10.57823 (11)0.05451 (8)0.77005 (7)0.0470 (3)
P20.54981 (11)0.33726 (8)0.66269 (7)0.0453 (3)
N10.5096 (4)0.2971 (3)0.8908 (2)0.0528 (9)
N20.7728 (4)0.2473 (3)0.8243 (2)0.0524 (9)
N30.9126 (4)0.2261 (3)0.8087 (3)0.0661 (11)
N40.9758 (4)0.2553 (4)0.8710 (3)0.0777 (13)
N50.8761 (5)0.2956 (3)0.9278 (3)0.0731 (12)
H550.89050.32070.97540.088*
B11.0728 (9)0.5802 (7)0.8609 (5)0.094 (3)
F11.1936 (6)0.5302 (6)0.8667 (4)0.235 (4)
F20.9726 (7)0.5127 (4)0.8631 (3)0.168 (2)
F31.0651 (6)0.6349 (5)0.7899 (3)0.171 (2)
F41.0472 (6)0.6438 (4)0.9270 (3)0.167 (2)
C10.6524 (5)0.0373 (4)0.9330 (3)0.0623 (12)
H10.59350.09660.94110.075*
C20.6681 (4)0.0088 (3)0.8555 (3)0.0478 (10)
C30.7541 (5)0.0988 (4)0.8461 (3)0.0653 (13)
H30.76500.13200.79470.078*
C40.8237 (6)0.1392 (5)0.9129 (4)0.0845 (18)
H40.88140.19920.90600.101*
C50.8083 (6)0.0915 (5)0.9885 (4)0.0898 (19)
H50.85570.11891.03310.108*
C60.7236 (6)0.0037 (5)0.9990 (3)0.0853 (17)
H60.71340.02881.05070.102*
C70.8132 (5)0.0060 (4)0.6619 (3)0.0669 (13)
H70.85820.04190.69970.080*
C80.8880 (6)0.0373 (5)0.5923 (4)0.0832 (17)
H80.98370.03200.58420.100*
C90.8223 (7)0.0880 (5)0.5349 (4)0.0889 (18)
H90.87340.11770.48830.107*
C100.6813 (7)0.0948 (4)0.5462 (4)0.0823 (17)
H100.63630.12720.50630.099*
C110.6053 (5)0.0540 (4)0.6167 (3)0.0614 (12)
H110.50980.06010.62460.074*
C120.6713 (4)0.0038 (3)0.6757 (3)0.0507 (10)
C130.4103 (4)0.0003 (4)0.7760 (3)0.0536 (11)
C140.3943 (5)0.1031 (4)0.7932 (3)0.0640 (13)
H140.47150.14640.80450.077*
C150.2646 (6)0.1428 (5)0.7937 (4)0.0849 (18)
H150.25480.21220.80520.102*
C160.1518 (6)0.0788 (7)0.7772 (5)0.105 (2)
H160.06480.10490.77750.125*
C170.1653 (6)0.0231 (6)0.7603 (5)0.106 (2)
H170.08760.06610.74930.128*
C180.2942 (5)0.0625 (4)0.7594 (4)0.0750 (16)
H180.30260.13190.74750.090*
C190.6554 (4)0.3099 (3)0.5644 (3)0.0454 (10)
C200.6671 (5)0.2101 (4)0.5339 (3)0.0629 (12)
H200.62280.15880.56500.076*
C210.7436 (6)0.1857 (4)0.4581 (3)0.0749 (15)
H210.74800.11910.43800.090*
C220.8129 (5)0.2602 (5)0.4129 (3)0.0721 (14)
H220.86590.24370.36280.087*
C230.8038 (5)0.3585 (4)0.4416 (3)0.0673 (13)
H230.85040.40890.41100.081*
C240.7246 (5)0.3833 (4)0.5170 (3)0.0569 (11)
H240.71840.45060.53560.068*
C250.5866 (4)0.4693 (3)0.6838 (3)0.0493 (10)
C260.7149 (5)0.4857 (4)0.7118 (3)0.0629 (13)
H260.77580.42980.72380.076*
C270.7529 (6)0.5842 (4)0.7220 (3)0.0759 (15)
H270.83960.59470.74000.091*
C280.6622 (7)0.6666 (4)0.7055 (4)0.0820 (17)
H280.68790.73310.71170.098*
C290.5351 (6)0.6514 (4)0.6802 (4)0.0786 (16)
H290.47350.70760.67010.094*
C300.4964 (5)0.5533 (4)0.6692 (3)0.0622 (13)
H300.40900.54380.65190.075*
C310.3718 (4)0.3494 (3)0.6329 (3)0.0456 (9)
C320.3376 (5)0.3416 (3)0.5508 (3)0.0558 (11)
H320.40790.33200.50720.067*
C330.1983 (5)0.3481 (4)0.5333 (4)0.0720 (15)
H330.17590.34150.47820.086*
C340.0941 (5)0.3641 (4)0.5973 (4)0.0784 (16)
H340.00130.36710.58560.094*
C350.1268 (5)0.3756 (5)0.6780 (4)0.0801 (16)
H350.05630.38950.72080.096*
C360.2637 (5)0.3666 (4)0.6959 (3)0.0695 (14)
H360.28460.37220.75140.083*
C370.3794 (5)0.3180 (4)0.9229 (3)0.0710 (14)
H370.30710.30330.89130.085*
C380.3466 (7)0.3612 (5)1.0023 (4)0.0869 (18)
H380.25420.37631.02250.104*
C390.4517 (8)0.3807 (5)1.0494 (4)0.0923 (19)
H390.43190.40801.10290.111*
C400.5873 (7)0.3598 (4)1.0173 (3)0.0787 (16)
H400.66060.37351.04830.094*
C410.6128 (5)0.3183 (3)0.9383 (3)0.0539 (11)
C420.7515 (5)0.2904 (3)0.8988 (3)0.0533 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0538 (3)0.0448 (3)0.0488 (3)0.0032 (2)0.0101 (2)0.0002 (2)
P10.0445 (6)0.0425 (6)0.0540 (7)0.0010 (4)0.0083 (5)0.0014 (5)
P20.0472 (6)0.0423 (6)0.0463 (6)0.0039 (4)0.0101 (5)0.0008 (5)
N10.058 (2)0.052 (2)0.047 (2)0.0029 (17)0.0012 (17)0.0002 (17)
N20.052 (2)0.051 (2)0.052 (2)0.0000 (16)0.0021 (17)0.0046 (17)
N30.049 (2)0.070 (3)0.079 (3)0.0067 (19)0.008 (2)0.001 (2)
N40.057 (3)0.085 (3)0.094 (4)0.002 (2)0.023 (3)0.006 (3)
N50.073 (3)0.075 (3)0.075 (3)0.002 (2)0.032 (2)0.009 (2)
B10.101 (6)0.097 (6)0.091 (6)0.010 (5)0.057 (5)0.029 (5)
F10.174 (5)0.282 (8)0.247 (7)0.130 (5)0.103 (5)0.132 (6)
F20.234 (6)0.144 (4)0.143 (4)0.071 (4)0.069 (4)0.022 (3)
F30.189 (5)0.211 (6)0.134 (4)0.100 (4)0.066 (4)0.044 (4)
F40.192 (5)0.168 (4)0.145 (4)0.061 (4)0.079 (4)0.090 (4)
C10.069 (3)0.062 (3)0.054 (3)0.001 (2)0.001 (2)0.006 (2)
C20.042 (2)0.046 (2)0.055 (3)0.0010 (18)0.0031 (18)0.004 (2)
C30.068 (3)0.056 (3)0.070 (3)0.010 (2)0.009 (3)0.005 (2)
C40.077 (4)0.081 (4)0.090 (4)0.022 (3)0.007 (3)0.029 (3)
C50.085 (4)0.116 (5)0.067 (4)0.007 (4)0.019 (3)0.038 (4)
C60.104 (5)0.099 (5)0.052 (3)0.004 (4)0.015 (3)0.012 (3)
C70.052 (3)0.082 (4)0.066 (3)0.003 (2)0.003 (2)0.002 (3)
C80.064 (3)0.095 (5)0.084 (4)0.008 (3)0.019 (3)0.003 (3)
C90.108 (5)0.070 (4)0.082 (4)0.003 (3)0.032 (4)0.013 (3)
C100.112 (5)0.068 (4)0.066 (4)0.023 (3)0.011 (3)0.023 (3)
C110.065 (3)0.056 (3)0.063 (3)0.009 (2)0.003 (2)0.010 (2)
C120.052 (2)0.042 (2)0.058 (3)0.0024 (18)0.006 (2)0.005 (2)
C130.047 (2)0.057 (3)0.056 (3)0.008 (2)0.005 (2)0.014 (2)
C140.054 (3)0.065 (3)0.073 (3)0.008 (2)0.003 (2)0.010 (3)
C150.070 (4)0.092 (4)0.095 (4)0.035 (3)0.011 (3)0.022 (3)
C160.050 (3)0.145 (7)0.121 (6)0.023 (4)0.006 (3)0.055 (5)
C170.046 (3)0.123 (6)0.151 (7)0.013 (3)0.022 (3)0.056 (5)
C180.052 (3)0.069 (3)0.107 (4)0.006 (2)0.021 (3)0.024 (3)
C190.041 (2)0.046 (2)0.049 (2)0.0042 (17)0.0122 (18)0.0079 (19)
C200.074 (3)0.047 (3)0.065 (3)0.007 (2)0.001 (2)0.000 (2)
C210.096 (4)0.060 (3)0.064 (3)0.014 (3)0.001 (3)0.009 (3)
C220.070 (3)0.084 (4)0.059 (3)0.015 (3)0.000 (3)0.005 (3)
C230.063 (3)0.077 (4)0.060 (3)0.001 (3)0.003 (2)0.007 (3)
C240.064 (3)0.057 (3)0.049 (3)0.002 (2)0.005 (2)0.002 (2)
C250.052 (2)0.050 (3)0.047 (2)0.0005 (19)0.0151 (19)0.0027 (19)
C260.060 (3)0.062 (3)0.070 (3)0.003 (2)0.023 (2)0.005 (2)
C270.080 (4)0.079 (4)0.074 (4)0.022 (3)0.027 (3)0.002 (3)
C280.104 (5)0.059 (3)0.089 (4)0.014 (3)0.029 (3)0.020 (3)
C290.097 (4)0.046 (3)0.094 (4)0.011 (3)0.026 (3)0.017 (3)
C300.065 (3)0.052 (3)0.071 (3)0.007 (2)0.023 (2)0.011 (2)
C310.048 (2)0.036 (2)0.051 (2)0.0021 (17)0.0053 (19)0.0008 (18)
C320.060 (3)0.056 (3)0.052 (3)0.001 (2)0.009 (2)0.010 (2)
C330.060 (3)0.080 (4)0.081 (4)0.001 (3)0.032 (3)0.017 (3)
C340.048 (3)0.086 (4)0.105 (5)0.009 (3)0.023 (3)0.000 (3)
C350.048 (3)0.102 (5)0.087 (4)0.002 (3)0.001 (3)0.015 (3)
C360.055 (3)0.095 (4)0.057 (3)0.006 (3)0.005 (2)0.008 (3)
C370.056 (3)0.081 (4)0.071 (3)0.003 (3)0.011 (2)0.000 (3)
C380.087 (4)0.080 (4)0.085 (4)0.011 (3)0.027 (3)0.002 (3)
C390.124 (6)0.085 (5)0.063 (4)0.006 (4)0.013 (4)0.014 (3)
C400.103 (4)0.076 (4)0.056 (3)0.000 (3)0.004 (3)0.013 (3)
C410.071 (3)0.044 (3)0.046 (2)0.002 (2)0.009 (2)0.0014 (19)
C420.059 (3)0.045 (3)0.057 (3)0.000 (2)0.014 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu—P12.2575 (13)C15—H150.9300
Cu—P22.2538 (14)C16—C171.364 (10)
Cu—N12.185 (4)C16—H160.9300
Cu—N22.103 (4)C17—C181.381 (8)
P1—C131.812 (5)C17—H170.9300
P1—C21.831 (4)C18—H180.9300
P1—C121.832 (5)C19—C241.381 (6)
P2—C191.819 (4)C19—C201.394 (6)
P2—C311.820 (4)C20—C211.389 (7)
P2—C251.830 (4)C20—H200.9300
N1—C371.326 (6)C21—C221.375 (7)
N1—C411.355 (5)C21—H210.9300
N2—C421.320 (5)C22—C231.366 (7)
N2—N31.360 (5)C22—H220.9300
N3—N41.292 (6)C23—C241.396 (6)
N4—N51.346 (6)C23—H230.9300
N5—C421.336 (6)C24—H240.9300
N5—H550.8600C25—C301.378 (6)
B1—F11.304 (8)C25—C261.388 (6)
B1—F31.329 (9)C26—C271.381 (7)
B1—F41.351 (8)C26—H260.9300
B1—F21.355 (9)C27—C281.371 (7)
C1—C21.378 (6)C27—H270.9300
C1—C61.384 (7)C28—C291.357 (7)
C1—H10.9300C28—H280.9300
C2—C31.390 (6)C29—C301.380 (7)
C3—C41.384 (7)C29—H290.9300
C3—H30.9300C30—H300.9300
C4—C51.361 (8)C31—C321.387 (6)
C4—H40.9300C31—C361.391 (6)
C5—C61.362 (8)C32—C331.396 (6)
C5—H50.9300C32—H320.9300
C6—H60.9300C33—C341.375 (7)
C7—C81.377 (7)C33—H330.9300
C7—C121.384 (6)C34—C351.367 (8)
C7—H70.9300C34—H340.9300
C8—C91.370 (8)C35—C361.375 (7)
C8—H80.9300C35—H350.9300
C9—C101.367 (8)C36—H360.9300
C9—H90.9300C37—C381.399 (8)
C10—C111.381 (7)C37—H370.9300
C10—H100.9300C38—C391.360 (9)
C11—C121.385 (6)C38—H380.9300
C11—H110.9300C39—C401.373 (8)
C13—C181.377 (6)C39—H390.9300
C13—C141.388 (6)C40—C411.378 (6)
C14—C151.391 (7)C40—H400.9300
C14—H140.9300C41—C421.452 (6)
C15—C161.364 (9)
N2—Cu—N178.18 (14)C17—C16—H16119.6
N2—Cu—P2112.66 (11)C15—C16—H16119.6
N1—Cu—P2110.72 (10)C16—C17—C18120.0 (6)
N2—Cu—P1103.38 (11)C16—C17—H17120.0
N1—Cu—P1114.14 (11)C18—C17—H17120.0
P2—Cu—P1126.75 (5)C13—C18—C17120.9 (6)
C13—P1—C2105.0 (2)C13—C18—H18119.5
C13—P1—C12103.4 (2)C17—C18—H18119.5
C2—P1—C12102.91 (19)C24—C19—C20117.5 (4)
C13—P1—Cu119.03 (15)C24—C19—P2123.5 (3)
C2—P1—Cu112.17 (15)C20—C19—P2119.0 (3)
C12—P1—Cu112.77 (15)C21—C20—C19121.3 (5)
C19—P2—C31104.20 (18)C21—C20—H20119.4
C19—P2—C25102.9 (2)C19—C20—H20119.4
C31—P2—C25103.88 (18)C22—C21—C20119.9 (5)
C19—P2—Cu116.03 (13)C22—C21—H21120.1
C31—P2—Cu114.80 (14)C20—C21—H21120.1
C25—P2—Cu113.54 (14)C23—C22—C21120.0 (5)
C37—N1—C41117.5 (4)C23—C22—H22120.0
C37—N1—Cu129.1 (3)C21—C22—H22120.0
C41—N1—Cu113.3 (3)C22—C23—C24120.1 (5)
C42—N2—N3107.1 (4)C22—C23—H23120.0
C42—N2—Cu112.5 (3)C24—C23—H23120.0
N3—N2—Cu140.3 (3)C19—C24—C23121.3 (5)
N4—N3—N2110.0 (4)C19—C24—H24119.3
N3—N4—N5106.4 (4)C23—C24—H24119.3
C42—N5—N4109.5 (4)C30—C25—C26118.5 (4)
C42—N5—H55125.3C30—C25—P2123.3 (3)
N4—N5—H55125.3C26—C25—P2118.1 (3)
F1—B1—F3113.6 (9)C27—C26—C25120.6 (5)
F1—B1—F4108.3 (5)C27—C26—H26119.7
F3—B1—F4109.1 (7)C25—C26—H26119.7
F1—B1—F2109.4 (8)C28—C27—C26119.7 (5)
F3—B1—F2106.8 (5)C28—C27—H27120.2
F4—B1—F2109.5 (8)C26—C27—H27120.2
C2—C1—C6120.7 (5)C29—C28—C27120.2 (5)
C2—C1—H1119.7C29—C28—H28119.9
C6—C1—H1119.7C27—C28—H28119.9
C1—C2—C3118.3 (4)C28—C29—C30120.5 (5)
C1—C2—P1117.8 (3)C28—C29—H29119.7
C3—C2—P1123.8 (4)C30—C29—H29119.7
C4—C3—C2120.3 (5)C25—C30—C29120.4 (5)
C4—C3—H3119.9C25—C30—H30119.8
C2—C3—H3119.9C29—C30—H30119.8
C5—C4—C3120.4 (5)C32—C31—C36118.0 (4)
C5—C4—H4119.8C32—C31—P2123.6 (3)
C3—C4—H4119.8C36—C31—P2118.4 (3)
C4—C5—C6120.0 (5)C31—C32—C33120.3 (5)
C4—C5—H5120.0C31—C32—H32119.9
C6—C5—H5120.0C33—C32—H32119.9
C5—C6—C1120.3 (6)C34—C33—C32120.1 (5)
C5—C6—H6119.9C34—C33—H33120.0
C1—C6—H6119.9C32—C33—H33120.0
C8—C7—C12120.2 (5)C35—C34—C33120.1 (5)
C8—C7—H7119.9C35—C34—H34119.9
C12—C7—H7119.9C33—C34—H34119.9
C9—C8—C7120.4 (5)C34—C35—C36120.0 (5)
C9—C8—H8119.8C34—C35—H35120.0
C7—C8—H8119.8C36—C35—H35120.0
C10—C9—C8119.8 (5)C35—C36—C31121.4 (5)
C10—C9—H9120.1C35—C36—H36119.3
C8—C9—H9120.1C31—C36—H36119.3
C9—C10—C11120.4 (5)N1—C37—C38122.5 (5)
C9—C10—H10119.8N1—C37—H37118.7
C11—C10—H10119.8C38—C37—H37118.7
C10—C11—C12120.1 (5)C39—C38—C37119.1 (6)
C10—C11—H11120.0C39—C38—H38120.5
C12—C11—H11120.0C37—C38—H38120.5
C7—C12—C11118.9 (4)C38—C39—C40119.3 (6)
C7—C12—P1118.1 (4)C38—C39—H39120.3
C11—C12—P1123.0 (3)C40—C39—H39120.3
C18—C13—C14118.1 (4)C39—C40—C41118.8 (6)
C18—C13—P1119.2 (4)C39—C40—H40120.6
C14—C13—P1122.6 (3)C41—C40—H40120.6
C13—C14—C15120.9 (5)N1—C41—C40122.7 (5)
C13—C14—H14119.5N1—C41—C42113.5 (4)
C15—C14—H14119.5C40—C41—C42123.8 (5)
C16—C15—C14119.3 (6)N2—C42—N5107.1 (4)
C16—C15—H15120.4N2—C42—C41122.5 (4)
C14—C15—H15120.4N5—C42—C41130.3 (4)
C17—C16—C15120.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H55···F4i0.861.802.650 (7)168
Symmetry code: (i) x+2, y+1, z+2.
Selected bond lengths (Å) top
Cu—P12.2575 (13)Cu—N12.185 (4)
Cu—P22.2538 (14)Cu—N22.103 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H55···F4i0.861.802.650 (7)168
Symmetry code: (i) x+2, y+1, z+2.
Acknowledgements top

This work was supported by the Natural Science Foundation of Zhejiang Province (grant No. LY12B02013), the Foundation of Zhejiang Education Committee (Y201119787), the National Natural Science Foundation of China (No. 51103136) and the National Natural Science Foundation of China (No. 21207117).

references
References top

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.

Jia, W., McCormick, T., Tao, Y., Liu, J. & Wang, S. (2005). Inorg. Chem. 44, 5706–5712.

Kuang, S., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313–3322.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tsuboyama, A., Kuge, K., Furugori, M., Okada, S., Hoshino, M. & Ueno, K. (2007). Inorg. Chem. 46, 1992–2001.

Zhang, Q.-S., Zhou, Q.-G., Cheng, Y., Wang, L.-X., Ma, D.-G., Jing, X.-B. & Wang, F.-S. (2004). Adv. Mater. 16, 432–436.