supplementary materials


xu5636 scheme

Acta Cryst. (2012). E68, m1455-m1456    [ doi:10.1107/S1600536812044959 ]

(3-Acetyl-5-carboxylato-4-methyl-1H-pyrazol-1-ido-[kappa]2N1,O5)aqua[(pyridin-2-yl)methanamine-[kappa]2N,N']copper(II)

S. Malinkin, V. A. Pavlenko, E. Gumienna-Kontecka, E. V. Prisyazhnaya and T. S. Iskenderov

Abstract top

In the title compound, [Cu(C7H6N2O3)(C6H8N2)(H2O)], the CuII ion is in a distorted square-pyramidal N3O2 environment formed by two bidentate chelating ligands in the equatorial coordination sites and one water molecule in the apical direction. In the crystal, O-H...O, N-H...O and O-H...N hydrogen bonds link the complex molecules into a three-dimensional supramolecular network.

Comment top

Pyrazole–derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Sachse et al., 2008; Penkova et al., 2009). Although usually this family of ligands is used for preparation of polynuclear complexes and coordination polymers, the mononuclear complexes based on pyrazole ligands can also represent an evident interest, especially as building block for preparation of polynuclear species. Herein we report the molecular and crystal structures of the title compound (Fig. 1) obtained in the framework of our synthetic and structural study of unsymmetrical 3,5-disubstituted pyrazolate ligands (Malinkin et al., 2011, 2012).

The title compound, [Cu(C6H6N2O3)(C6H8N2)(H2O)] is a mononuclear mixed ligand complex, in which CuII ion is in distorted square-pyramidal environment formed by two bidentate (N, O) and (N, N) chelating ligands occupying four equatorial coordination sites and by the apically coordinated water molecule. While 2-aminomethylpyridine acts as a neutral ligand, the (3-acetyl-5-carboxylate)pyrazole ligand is a doubly charged acidoligand exhibiting its traditional (N, O)-chelating binding mode. The equatorial Cu—N and Cu—O bond lengths are in the range 1.9451 (9)–2.0048 (10) Å, whereas the apical Cu—O contact with water molecule is longer (2.3492 (8) Å). The coordination bond lengths Cu—N and Cu—O are typical for square-pyramidal Cu(II) complexes with the amine, deprotonated pyrazolate and carboxylate donors (Sliva et al., 1997; Kanderal et al., 2005). The bite angles around the central atom deviate from an ideal square-planar configuration [e.g. N1—Cu1—O2 = 82.74 (3)°], which is a consequence of the formation of five-membered chelate rings.

The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Krämer et al., 2000; Moroz et al., 2010). The C—C, C—N and N—N bond lengths in the pyrazole ring have their typical values (Sachse et al., 2008; Penkova et al., 2009). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.2376 (13) and 1.2917 (13)) which is typical for monodentately coordinated carboxylates (Fritsky et al., 2004; Wörl et al., 2005a,b).

Numerous intermolecular O—H···O, N—H···O and O—H···N H-bonds in which the water molecules and the amine groups act as donors while the carboxylic groups, the water oxygen and the pyrazole nitrogen atoms act as acceptors unite the complex molecules in three-dimensional H-bonded network (Fig. 2).

Related literature top

For applications of related pyrazoles, see: Sachse et al. (2008); Penkova et al. (2009). For synthetic and structural studies of 3,5-disubstituted 1H-pyrazoles and their metal complexes, see: Malinkin et al. (2011, 2012). For related structures, see: Fritsky et al. (2004); Kanderal et al. (2005); Krämer & Fritsky (2000); Moroz et al. (2010); Sliva et al. (1997); Wörl et al. (2005a,b).

Experimental top

To the solution of [Cu4(KA)4(H2O)4] x 4H2O (Malinkin et al., 2011) (0.100 g, 0.078 mmol) in methanol (8 ml), 2-aminomethylpyridine (0.042 g, 0.391 mmol) was added. The reaction mixture was stirred upon ambient temperature for 10 minutes. Blue crystals suitable for X-ray diffraction were formed upon slow diffusion of diethyl ester into methanolic solution in 24 h (yield 0.028 g, 20%). Elemental analysis calc. (%) for C13H18CuN4O4: C 43.63; H 5.07; N 15.66; found: C 44.11; H 5.40; N 15.43.

Refinement top

The OH and NH hydrogen atoms were located from the difference Fourier map, and their positional and isotropic thermal parameters were included into the further stages of refinement. The C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity. Symmetry codes: (i) -1 + x, -1 + y, z; (ii) 1 - x, 1 - y, -z; (iii) -x, -y, -z; (iv) -1 + x, y, z.
(3-Acetyl-5-carboxylato-4-methyl-1H-pyrazol-1-ido- κ2N1,O5)aqua[(pyridin-2-yl)methanamine- κ2N,N']copper(II) top
Crystal data top
[Cu(C7H6N2O3)(C6H8N2)(H2O)]Z = 2
Mr = 355.84F(000) = 366
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3063 (2) ÅCell parameters from 2567 reflections
b = 8.3258 (5) Åθ = 3.0–28.5°
c = 13.1260 (7) ŵ = 1.55 mm1
α = 90.695 (6)°T = 120 K
β = 105.935 (4)°Block, blue
γ = 110.232 (4)°0.36 × 0.23 × 0.13 mm
V = 715.32 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
5715 independent reflections
Radiation source: fine-focus sealed tube4833 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.016
Detector resolution: 9 pixels mm-1θmax = 35.1°, θmin = 2.9°
φ scans and ω scans with κ offseth = 119
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.955, Tmax = 0.987l = 2021
13527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
5715 reflections(Δ/σ)max = 0.004
217 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C7H6N2O3)(C6H8N2)(H2O)]γ = 110.232 (4)°
Mr = 355.84V = 715.32 (6) Å3
Triclinic, P1Z = 2
a = 7.3063 (2) ÅMo Kα radiation
b = 8.3258 (5) ŵ = 1.55 mm1
c = 13.1260 (7) ÅT = 120 K
α = 90.695 (6)°0.36 × 0.23 × 0.13 mm
β = 105.935 (4)°
Data collection top
Nonius KappaCCD
diffractometer
5715 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4833 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.987Rint = 0.016
13527 measured reflectionsθmax = 35.1°
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.72 e Å3
S = 1.07Δρmin = 0.32 e Å3
5715 reflectionsAbsolute structure: ?
217 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.545220 (19)0.299111 (15)0.020497 (9)0.01226 (4)
O10.74298 (12)0.49534 (9)0.02392 (6)0.01456 (14)
O20.85228 (12)0.57781 (10)0.16483 (6)0.01670 (15)
O30.22559 (13)0.03669 (11)0.47062 (6)0.01945 (16)
O40.79221 (13)0.17036 (10)0.06402 (6)0.01427 (14)
N10.45340 (14)0.21529 (11)0.13062 (7)0.01267 (15)
N20.30428 (14)0.08145 (11)0.19556 (7)0.01319 (16)
N30.63606 (14)0.39053 (11)0.17463 (7)0.01323 (15)
N40.29685 (15)0.14866 (12)0.05729 (7)0.01486 (16)
C10.73803 (15)0.47312 (13)0.12234 (8)0.01244 (17)
C20.57544 (15)0.31343 (12)0.18524 (8)0.01178 (17)
C30.50547 (16)0.24117 (13)0.29113 (8)0.01245 (17)
C40.33336 (16)0.09471 (13)0.29373 (8)0.01263 (17)
C50.19154 (17)0.03454 (13)0.38437 (8)0.01427 (18)
C60.00133 (18)0.16234 (15)0.36737 (9)0.0198 (2)
H6A0.07840.23900.43180.030*
H6B0.07760.10190.34860.030*
H6C0.03860.22760.31080.030*
C70.58880 (17)0.30559 (15)0.38093 (9)0.0172 (2)
H7A0.70160.41310.35600.026*
H7B0.48390.32240.43740.026*
H7C0.63450.22270.40700.026*
C80.79957 (17)0.53218 (14)0.22340 (9)0.01563 (18)
H80.87380.60150.18260.019*
C90.86018 (18)0.57730 (15)0.33271 (9)0.0189 (2)
H90.97140.67710.36490.023*
C100.75138 (19)0.47038 (16)0.39326 (9)0.0204 (2)
H100.79170.49590.46700.024*
C110.58221 (19)0.32535 (15)0.34283 (9)0.0187 (2)
H110.50670.25310.38210.022*
C120.52770 (17)0.28997 (14)0.23287 (8)0.01449 (18)
C130.34690 (17)0.13433 (14)0.17266 (9)0.01577 (19)
H13A0.37800.03100.18640.019*
H13B0.23020.12520.19700.019*
H1N40.236 (3)0.048 (2)0.0232 (14)0.025 (4)*
H2O40.773 (3)0.114 (2)0.1040 (14)0.024 (4)*
H2N40.207 (3)0.194 (3)0.0389 (16)0.040 (5)*
H1O40.895 (3)0.247 (3)0.0914 (17)0.041 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01549 (7)0.00997 (6)0.00858 (6)0.00179 (4)0.00302 (4)0.00059 (4)
O10.0177 (4)0.0105 (3)0.0116 (3)0.0019 (3)0.0025 (3)0.0001 (2)
O20.0156 (4)0.0145 (3)0.0161 (4)0.0008 (3)0.0045 (3)0.0034 (3)
O30.0233 (4)0.0230 (4)0.0110 (3)0.0081 (3)0.0041 (3)0.0014 (3)
O40.0171 (4)0.0098 (3)0.0128 (3)0.0018 (3)0.0037 (3)0.0014 (2)
N10.0140 (4)0.0102 (4)0.0107 (4)0.0014 (3)0.0029 (3)0.0003 (3)
N20.0157 (4)0.0109 (4)0.0094 (4)0.0016 (3)0.0023 (3)0.0001 (3)
N30.0147 (4)0.0134 (4)0.0118 (4)0.0059 (3)0.0033 (3)0.0005 (3)
N40.0167 (4)0.0139 (4)0.0116 (4)0.0033 (3)0.0037 (3)0.0019 (3)
C10.0123 (4)0.0106 (4)0.0132 (4)0.0039 (3)0.0022 (3)0.0015 (3)
C20.0128 (4)0.0099 (4)0.0110 (4)0.0026 (3)0.0030 (3)0.0010 (3)
C30.0137 (4)0.0133 (4)0.0102 (4)0.0047 (3)0.0037 (3)0.0015 (3)
C40.0155 (4)0.0120 (4)0.0097 (4)0.0041 (3)0.0036 (3)0.0014 (3)
C50.0168 (5)0.0124 (4)0.0122 (4)0.0055 (3)0.0019 (4)0.0002 (3)
C60.0207 (5)0.0167 (5)0.0146 (5)0.0008 (4)0.0015 (4)0.0017 (3)
C70.0186 (5)0.0204 (5)0.0125 (4)0.0050 (4)0.0070 (4)0.0023 (3)
C80.0142 (4)0.0163 (5)0.0149 (5)0.0055 (4)0.0021 (4)0.0029 (3)
C90.0171 (5)0.0204 (5)0.0164 (5)0.0074 (4)0.0001 (4)0.0055 (4)
C100.0227 (5)0.0260 (6)0.0117 (5)0.0112 (4)0.0012 (4)0.0034 (4)
C110.0230 (5)0.0229 (5)0.0117 (5)0.0097 (4)0.0057 (4)0.0009 (4)
C120.0182 (5)0.0156 (4)0.0119 (4)0.0087 (4)0.0047 (4)0.0005 (3)
C130.0191 (5)0.0152 (4)0.0133 (4)0.0055 (4)0.0062 (4)0.0017 (3)
Geometric parameters (Å, º) top
Cu1—N11.9451 (9)C3—C71.4937 (15)
Cu1—N31.9973 (9)C4—C51.4724 (15)
Cu1—N42.0048 (10)C5—C61.5055 (16)
Cu1—O11.9874 (8)C6—H6A0.9600
Cu1—O42.3492 (8)C6—H6B0.9600
O1—C11.2917 (13)C6—H6C0.9600
O2—C11.2376 (13)C7—H7A0.9600
O3—C51.2252 (13)C7—H7B0.9600
O4—H2O40.717 (18)C7—H7C0.9600
O4—H1O40.78 (2)C8—C91.3852 (15)
N1—N21.3351 (12)C8—H80.9300
N1—C21.3558 (13)C9—C101.3895 (18)
N2—C41.3622 (13)C9—H90.9300
N3—C121.3422 (14)C10—C111.3868 (17)
N3—C81.3473 (14)C10—H100.9300
N4—C131.4736 (14)C11—C121.3862 (15)
N4—H1N40.849 (17)C11—H110.9300
N4—H2N40.84 (2)C12—C131.5056 (15)
C1—C21.4842 (14)C13—H13A0.9700
C2—C31.3899 (14)C13—H13B0.9700
C3—C41.4087 (14)
N1—Cu1—O182.74 (3)C3—C4—C5129.26 (9)
N1—Cu1—N3178.33 (4)O3—C5—C4121.35 (10)
O1—Cu1—N396.71 (3)O3—C5—C6121.30 (10)
N1—Cu1—N497.67 (4)C4—C5—C6117.34 (9)
O1—Cu1—N4162.48 (4)C5—C6—H6A109.5
N3—Cu1—N482.38 (4)C5—C6—H6B109.5
N1—Cu1—O494.29 (3)H6A—C6—H6B109.5
O1—Cu1—O488.99 (3)C5—C6—H6C109.5
N3—Cu1—O487.27 (3)H6A—C6—H6C109.5
N4—Cu1—O4108.40 (4)H6B—C6—H6C109.5
C1—O1—Cu1113.96 (6)C3—C7—H7A109.5
Cu1—O4—H2O4109.7 (14)C3—C7—H7B109.5
Cu1—O4—H1O4104.8 (15)H7A—C7—H7B109.5
H2O4—O4—H1O4106 (2)C3—C7—H7C109.5
N2—N1—C2110.24 (8)H7A—C7—H7C109.5
N2—N1—Cu1136.81 (7)H7B—C7—H7C109.5
C2—N1—Cu1112.89 (7)N3—C8—C9121.77 (11)
N1—N2—C4106.46 (8)N3—C8—H8119.1
C12—N3—C8119.53 (9)C9—C8—H8119.1
C12—N3—Cu1114.19 (7)C8—C9—C10118.62 (11)
C8—N3—Cu1126.10 (8)C8—C9—H9120.7
C13—N4—Cu1110.41 (7)C10—C9—H9120.7
C13—N4—H1N4109.1 (12)C9—C10—C11119.49 (10)
Cu1—N4—H1N4116.1 (11)C9—C10—H10120.3
C13—N4—H2N4110.5 (13)C11—C10—H10120.3
Cu1—N4—H2N4107.6 (13)C12—C11—C10118.78 (11)
H1N4—N4—H2N4102.8 (17)C12—C11—H11120.6
O2—C1—O1124.10 (9)C10—C11—H11120.6
O2—C1—C2120.82 (9)N3—C12—C11121.76 (10)
O1—C1—C2115.01 (9)N3—C12—C13116.41 (9)
N1—C2—C3109.44 (9)C11—C12—C13121.81 (10)
N1—C2—C1114.77 (8)N4—C13—C12110.16 (9)
C3—C2—C1135.63 (9)N4—C13—H13A109.6
C2—C3—C4103.02 (9)C12—C13—H13A109.6
C2—C3—C7128.53 (10)N4—C13—H13B109.6
C4—C3—C7128.43 (9)C12—C13—H13B109.6
N2—C4—C3110.82 (9)H13A—C13—H13B108.1
N2—C4—C5119.92 (9)
N1—Cu1—O1—C16.64 (7)O2—C1—C2—N1176.16 (10)
N3—Cu1—O1—C1174.95 (7)O1—C1—C2—N11.03 (13)
N4—Cu1—O1—C199.11 (13)O2—C1—C2—C31.25 (19)
O4—Cu1—O1—C187.82 (7)O1—C1—C2—C3175.94 (11)
O1—Cu1—N1—N2176.05 (11)N1—C2—C3—C40.34 (11)
N3—Cu1—N1—N2105.3 (12)C1—C2—C3—C4174.76 (11)
N4—Cu1—N1—N213.71 (11)N1—C2—C3—C7178.83 (10)
O4—Cu1—N1—N295.53 (11)C1—C2—C3—C73.7 (2)
O1—Cu1—N1—C27.03 (7)N1—N2—C4—C30.11 (12)
N3—Cu1—N1—C277.8 (12)N1—N2—C4—C5179.58 (9)
N4—Cu1—N1—C2169.36 (7)C2—C3—C4—N20.14 (12)
O4—Cu1—N1—C281.40 (7)C7—C3—C4—N2178.64 (10)
C2—N1—N2—C40.33 (12)C2—C3—C4—C5179.26 (10)
Cu1—N1—N2—C4176.65 (8)C7—C3—C4—C50.77 (19)
N1—Cu1—N3—C12107.5 (12)N2—C4—C5—O3172.17 (10)
O1—Cu1—N3—C12178.03 (7)C3—C4—C5—O38.47 (18)
N4—Cu1—N3—C1215.67 (8)N2—C4—C5—C68.75 (15)
O4—Cu1—N3—C1293.31 (8)C3—C4—C5—C6170.61 (11)
N1—Cu1—N3—C877.6 (12)C12—N3—C8—C90.21 (16)
O1—Cu1—N3—C87.01 (9)Cu1—N3—C8—C9174.50 (8)
N4—Cu1—N3—C8169.37 (9)N3—C8—C9—C101.62 (17)
O4—Cu1—N3—C881.65 (9)C8—C9—C10—C112.07 (18)
N1—Cu1—N4—C13158.90 (7)C9—C10—C11—C120.76 (18)
O1—Cu1—N4—C13110.94 (12)C8—N3—C12—C111.61 (16)
N3—Cu1—N4—C1322.79 (7)Cu1—N3—C12—C11173.71 (8)
O4—Cu1—N4—C1361.76 (8)C8—N3—C12—C13179.85 (9)
Cu1—O1—C1—O2178.07 (8)Cu1—N3—C12—C134.84 (12)
Cu1—O1—C1—C24.84 (11)C10—C11—C12—N31.12 (17)
N2—N1—C2—C30.44 (12)C10—C11—C12—C13179.58 (10)
Cu1—N1—C2—C3177.32 (7)Cu1—N4—C13—C1225.68 (10)
N2—N1—C2—C1175.79 (8)N3—C12—C13—N414.04 (13)
Cu1—N1—C2—C16.45 (11)C11—C12—C13—N4167.42 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.78 (2)1.90 (2)2.6782 (11)176 (2)
O4—H2O4···N2ii0.717 (18)2.049 (18)2.7581 (12)169.7 (19)
N4—H1N4···O4ii0.849 (17)2.055 (17)2.8542 (12)156.6 (16)
N4—H2N4···O1iii0.84 (2)2.50 (2)3.1017 (13)128.6 (16)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
Selected bond lengths (Å) top
Cu1—N11.9451 (9)Cu1—O11.9874 (8)
Cu1—N31.9973 (9)Cu1—O42.3492 (8)
Cu1—N42.0048 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.78 (2)1.90 (2)2.6782 (11)176 (2)
O4—H2O4···N2ii0.717 (18)2.049 (18)2.7581 (12)169.7 (19)
N4—H1N4···O4ii0.849 (17)2.055 (17)2.8542 (12)156.6 (16)
N4—H2N4···O1iii0.84 (2)2.50 (2)3.1017 (13)128.6 (16)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
Acknowledgements top

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

references
References top

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.

Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.

Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.

Malinkin, S., Golenya, I. A., Pavlenko, V. A., Haukka, M. & Iskenderov, T. S. (2011). Acta Cryst. E67, m1260–m1261.

Malinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77–84.

Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.

Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.

Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.

Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.

Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29.